3,451 research outputs found
Two novel evolutionary formulations of the graph coloring problem
We introduce two novel evolutionary formulations of the problem of coloring
the nodes of a graph. The first formulation is based on the relationship that
exists between a graph's chromatic number and its acyclic orientations. It
views such orientations as individuals and evolves them with the aid of
evolutionary operators that are very heavily based on the structure of the
graph and its acyclic orientations. The second formulation, unlike the first
one, does not tackle one graph at a time, but rather aims at evolving a
`program' to color all graphs belonging to a class whose members all have the
same number of nodes and other common attributes. The heuristics that result
from these formulations have been tested on some of the Second DIMACS
Implementation Challenge benchmark graphs, and have been found to be
competitive when compared to the several other heuristics that have also been
tested on those graphs.Comment: To appear in Journal of Combinatorial Optimizatio
On the Integrability and Chaos of an N=2 Maxwell-Chern-Simons-Higgs Mechanical Model
We apply different integrability analysis procedures to a reduced (spatially
homogeneous) mechanical system derived from an off-shell non-minimally coupled
N=2 Maxwell-Chern-Simons-Higgs model that presents BPS topological vortex
excitations, numerically obtained with an ansatz adopted in a special -
critical coupling - parametric regime. As a counterpart of the regularity
associated to the static soliton-like solution, we investigate the possibility
of chaotic dynamics in the evolution of the spatially homogeneous reduced
system, descendant from the full N=2 model under consideration. The originally
rich content of symmetries and interactions, N=2 susy and non-minimal coupling,
singles out the proposed model as an interesting framework for the
investigation of the role played by (super-)symmetries and parametric domains
in the triggering/control of chaotic behavior in gauge systems.
After writing down effective Lagrangian and Hamiltonian functions, and
establishing the corresponding canonical Hamilton equations, we apply global
integrability Noether point symmetries and Painleveproperty criteria to both
the general and the critical coupling regimes. As a non-integrable character is
detected by the pair of analytical criteria applied, we perform suitable
numerical simulations, as we seek for chaotic patterns in the system evolution.
Finally, we present some Comments on the results and perspectives for further
investigations and forthcoming communications.Comment: 18 pages, 5 figure
A Simulation Model to Evaluate Supplementation of Tropical Forage Diets for Dairy Cows
A dynamic model of digestion kinetics has been built to evaluate dairy cattle diets based on tropical feeds and to estimate the potential of tropical forages for milk production associated with available supplements. Results of simulation were very consistent showing that grazed elephant grass alone can supply nutrients for cow maintenance and yield of 7.10 kg milk/day. Nevertheless, to produce 25 kg/day on grazed elephant grass, a dairy cow would need to be supplemented with 5.85 kg/day of a mixture of cottonseed meal (50%) plus ground maize (50%), while on maize silage it would be necessary 4.15 kg of the same supplementation. On the other hand, for the same amount of milk, a cow fed a sugarcane/urea-based diet would need 5.87 kg of the above mixture. As far as feeding cost is concerned, to reach the potential production of 25 kg of milk/day, a cow would expend US 1.40 on sugarcane- and maize silage-based diets. The present model showed to be an useful tool for assessing, preexperimentally, the potential response to supplementation of dairy cows fed tropical forages
Loop variables in the geometry of a rotating black string
In this paper we analyze in the Wilson loop context the parallel transport of
vectors and spinors around a closed loop in the background space-time of a
rotating black string in order to classify its global properties. We also
examine particular closed orbits in this space-time and verify the Mandelstam
relations.Comment: 14 pages, iopart styl
Pseudo-Hermitian Representation of Quantum Mechanics
A diagonalizable non-Hermitian Hamiltonian having a real spectrum may be used
to define a unitary quantum system, if one modifies the inner product of the
Hilbert space properly. We give a comprehensive and essentially self-contained
review of the basic ideas and techniques responsible for the recent
developments in this subject. We provide a critical assessment of the role of
the geometry of the Hilbert space in conventional quantum mechanics to reveal
the basic physical principle motivating our study. We then offer a survey of
the necessary mathematical tools and elaborate on a number of relevant issues
of fundamental importance. In particular, we discuss the role of the antilinear
symmetries such as PT, the true meaning and significance of the charge
operators C and the CPT-inner products, the nature of the physical observables,
the equivalent description of such models using ordinary Hermitian quantum
mechanics, the pertaining duality between local-non-Hermitian versus
nonlocal-Hermitian descriptions of their dynamics, the corresponding classical
systems, the pseudo-Hermitian canonical quantization scheme, various methods of
calculating the (pseudo-) metric operators, subtleties of dealing with
time-dependent quasi-Hermitian Hamiltonians and the path-integral formulation
of the theory, and the structure of the state space and its ramifications for
the quantum Brachistochrone problem. We also explore some concrete physical
applications of the abstract concepts and tools that have been developed in the
course of this investigation. These include applications in nuclear physics,
condensed matter physics, relativistic quantum mechanics and quantum field
theory, quantum cosmology, electromagnetic wave propagation, open quantum
systems, magnetohydrodynamics, quantum chaos, and biophysics.Comment: 76 pages, 2 figures, 243 references, published as Int. J. Geom. Meth.
Mod. Phys. 7, 1191-1306 (2010
Experimental Observation of Quantum Correlations in Modular Variables
We experimentally detect entanglement in modular position and momentum
variables of photon pairs which have passed through -slit apertures. We
first employ an entanglement criteria recently proposed in [Phys. Rev. Lett.
{\bf 106}, 210501 (2011)], using variances of the modular variables. We then
propose an entanglement witness for modular variables based on the Shannon
entropy, and test it experimentally. Finally, we derive criteria for
Einstein-Podolsky-Rosen-Steering correlations using variances and entropy
functions. In both cases, the entropic criteria are more successful at
identifying quantum correlations in our data.Comment: 7 pages, 4 figures, comments welcom
- …