10 research outputs found

    A runaway collision in a young star cluster as the origin of the brightest supernova

    Full text link
    Supernova 2006gy in the galaxy NGC 1260 is the most luminous one recorded \cite{2006CBET..644....1Q, 2006CBET..647....1H, 2006CBET..648....1P, 2006CBET..695....1F}. Its progenitor might have been a very massive (>100>100 \msun) star \cite{2006astro.ph.12617S}, but that is incompatible with hydrogen in the spectrum of the supernova, because stars >40>40 \msun are believed to have shed their hydrogen envelopes several hundred thousand years before the explosion \cite{2005A&A...429..581M}. Alternatively, the progenitor might have arisen from the merger of two massive stars \cite{2007ApJ...659L..13O}. Here we show that the collision frequency of massive stars in a dense and young cluster (of the kind to be expected near the center of a galaxy) is sufficient to provide a reasonable chance that SN 2006gy resulted from such a bombardment. If this is the correct explanation, then we predict that when the supernova fades (in a year or so) a dense cluster of massive stars becomes visible at the site of the explosion

    An upper limit to the masses of stars

    Full text link
    There is no accepted upper mass limit for stars. Such a basic quantity escapes both theory, because of incomplete understanding of star formation, and observation, because of incompleteness in surveying the Galaxy. The Arches cluster is ideal for such a test, being massive enough to expect stars at least as massive as 400 solar masses, and young enough for its most massive members to still be visible. It is old enough to be free of its natal molecular cloud, and close enough, and at a well-established distance, for us to discern its individual stars. Here I report an absence of stars with initial masses greater than 130 M_Sun in the Arches cluster, where the typical mass function predicts 18. I conclude that this indicates a firm limit of 150 M_Sun for stars as the probability that the observations are consistent with no limit is 10^-8.Comment: To appear in Nature, March 10, 2005, Vol. 34, No. 7030, 192 (ST ScI Eprint #1645). More files can be found at http://www.stsci.edu/~fige

    The Initial Mass Function in the Galactic Center

    Full text link
    The Galactic Center contains the most massive young clusters in the Galaxy and serves as the closest example of a massive starburst region. Our recent results suggest that the Galactic Center environment produces massive clusters with relatively flat initial mass functions, as might be expected on theoretical grounds. I will discuss these recent results, along with evidence for star formation in the immediate vicinity of the super massive black hole at the Galactic Center. The results of this work might be useful in extrapolating to other galactic centers with similar conditions, as well as other starburst regions

    Radio jets from young stellar objects

    No full text
    corecore