89 research outputs found

    Structures Related to the Emplacement of Shallow-Level Intrusions

    Get PDF
    A systematic view of the vast nomenclature used to describe the structures of shallow-level intrusions is presented here. Structures are organised in four main groups, according to logical breaks in the timing of magma emplacement, independent of the scales of features: (1) Intrusion-related structures, formed as the magma is making space and then develops into its intrusion shape; (2) Magmatic flow-related structures, developed as magma moves with suspended crystals that are free to rotate; (3) Solid-state, flow-related structures that formed in portions of the intrusions affected by continuing flow of nearby magma, therefore considered to have a syn-magmatic, non-tectonic origin; (4) Thermal and fragmental structures, related to creation of space and impact on host materials. This scheme appears as a rational organisation, helpful in describing and interpreting the large variety of structures observed in shallow-level intrusions

    Occurrence, chemistry, and origin of immiscible silicate glasses in a tholeiitic basalt: A TEM/AEM study

    Full text link
    The occurrence and chemistry of immiscible silicate glasses in a tholeiite mesostasis from the Umtanum formation, Washington, were investigated with transmission electron microscopy and analytical electron microscopy (TEM/AEM). TEM observation reveals isolated, dark globules (2.1 micron or less in diameter) randomly distributed in a transparent matrix glass interstitial to plagioclase laths. The globules less than 0.3 micron and larger than 0.8 micron fall beyond the linear relationship defined by the 0.3–0.8 micron globules in a plot of the logarithm of number versus size. Large globules (0.7 micron or larger in diameter) range from homogeneous to heterogeneous in optical properties and chemistry. Homogeneous globules are completely glassy, whereas heterogeneous globules contain crystalline domains. AEM analyses show that the globules have high Si, Fe, Ca, and Ti with subordinate Mg, Al, P, S, Cl, K, and Mn, which gives high normative fa , px, il , and ap . The matrix glass consists dominantly of Si with low Al and minor Na and K, yielding a high normative qz, or, ab , and an .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47343/1/410_2004_Article_BF00371230.pd
    corecore