5 research outputs found

    Ric-3 chaperone-mediated stable cell-surface expression of the neuronal α7 nicotinic acetylcholine receptor in mammalian cells

    Get PDF
    Aim: Studies of the α7-type neuronal nicotinic acetylcholine receptor (AChR), one of the receptor forms involved in many physiologically relevant processes in the central nervous system, have been hampered by the inability of this homomeric protein to assemble in most heterologous expression systems. In a recent study, it was shown that the chaperone Ric-3 is necessary for the maturation and functional expression of α7-type AChRs 1. The current work aims at obtaining and characterizing a cell line with high functional expression of the human α7 AChR. Methods: Ric-3 cDNA was incorporated into SHE-P1-hα7 cells expressing the α7-type AChR. Functional studies were undertaken using single-channel patch-clamp recordings. Equilibrium and kinetic [ 125 I;[alpha;-bungarotoxin binding assays, as well as fluorescence microscopy using fluorescent α-bungarotoxin, anti-α7 antibody, and GFP-α7 were performed on the new clone. Results: The human α7-type AChR was stably expressed in a new cell line, which we coined SHE-P1-hα7-Ric-3, by co-expression of the chaperone Ric-3. Cell-surface AChRs exhibited [ 125 I;[alpha;BTX saturable binding with an apparent K D of about 55 nmol/L. Fluorescence microscopy revealed dispersed and micro-clustered AChR aggregates at the surface of SHE-P1-hα7-Ric-3 cells. Larger micron-sized clusters were observed in the absence of receptor-clustering proteins or upon aggregation with anti-α7 antibodies. In contrast, chaperone-less SHE-P1-hα7 cells expressed only intracellular α7 AChRs and failed to produce detectable single-channel currents. Conclusion: The production of a stable and functional cell line of neuroepithelial lineage with robust cell-surface expression of neuronal α7-type AChR, as reported here, constitutes an important advance in the study of homomeric receptors in mammalian cells.Fil: Valles, Ana Sofia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; Argentina. Unesco; ArgentinaFil: Roccamo, Ana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; Argentina. Unesco; ArgentinaFil: Barrantes, Francisco Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; Argentina. Unesco; Argentin

    Spatiotemporal dynamics of nicotinic acetylcholine receptors and lipid platforms

    No full text
    Abstract: The relationships between neurotransmitter receptors and their membrane environment are complex, mutual (bidirectional) and physiologically important. Some of these relationships are established with subsets of the membrane lipid population, in the form of lipid platforms, lateral heterogeneities of the bilayer lipid having a dynamic chemical composition distinct from that of the bulk membrane. In addition to the equilibrium between the biosynthetic production, exocytic delivery and recycling of receptors on the one hand, and the endocytic internalization on the other, lateral diffusion, clustering and anchorage of receptors at the lipid platforms play key roles in determining the amount of active receptors at the synapse. Mobile receptors traffic between reservoir non-synaptic membranes and the synapse predominantly by thermally driven Brownian motion, and become immobilized at the perisynaptic region or the synapse proper by various mechanisms. These comprise: (a) clustering mediated by homotropic inter-molecular receptor-receptor associations; (b) heterotropic associations with non-receptor scaffolding proteins or the subjacent cytoskeletal meshwork, leading to diffusional “trapping”, and (c) protein-lipid interactions, particularly with the neutral lipid cholesterol. Preceded by a brief introduction on the currently used methods to study protein lateral mobility in membranes, this review assesses the contribution of some of these mechanisms to the supramolecular organization and dynamics of the paradigm neurotransmitter receptor of muscle and neuronal cells—the nicotinic acetylcholine receptor (nAChR). The translational mobility of nAChRs at these two cell surfaces differs in terms of diffusion coefficients and residence intervals at the synapse, which cover an ample range of time regimes. Neuronal α7 nAChRs exhibit diffusion coefficients similar to those of other neurotransmitter receptors and spend part of their lifetime confined to the perisynaptic region of glutamatergic (excitatory) and GABAergic (inhibitory) synapses; they may also be involved in the regulation of the dynamic equilibrium between excitation and inhibition in brain
    corecore