24 research outputs found

    Plasma leptin and insulin-like growth factor I levels during acute exacerbations of chronic obstructive pulmonary disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent studies have provided evidence for a link between leptin and tumor necrosis factor-alpha (TNF-α). Insulin-like growth factor I (IGF-I) mediates the metabolic effects of growth hormone (GH). The GH axis is believed to be suppressed in chronic obstructive pulmonary disease (COPD). The aim of this study is to find out whether acute exacerbations of COPD are followed by changes in plasma leptin and insulin-like growth factor I (IGF-I) levels and furthermore, whether these changes are related to systemic inflammation.</p> <p>Methods</p> <p>We measured serum leptin, IGF-I, TNF-α, interleukin 1β (IL-1β), interleukin 6 (IL-6) and interleukin 8 (IL-8) levels in 52 COPD patients with acute exacerbation on admission to hospital (Day 1) and two weeks later (Day 15). 25 healthy age-matched subjects served as controls. COPD patients were also divided into two subgroups (29 with chronic bronchitis and 23 with emphysema). Serum leptin and IGF-I were measured by radioimmunoassay and TNF-α, IL-1β, IL-6 and IL-8 were measured by ELISA.</p> <p>Results</p> <p>Serum leptin levels were significantly higher and serum IGF-I levels significantly lower in COPD patients on Day 1 than in healthy controls (p < 0.001). A positive correlation was observed between leptin and TNF-α on Day 1 (r = 0.620, p < 0.001). Emphysematous patients had significantly lower IGF-I levels compared to those with chronic bronchitis both on Day 1 and Day 15 (p = 0.003 and p < 0.001 respectively).</p> <p>Conclusion</p> <p>Inappropriately increased circulating leptin levels along with decreased IGF-I levels occured during acute exacerbations of COPD. Compared to chronic bronchitis, patients with emphysema had lower circulating IGF-I levels both at the onset of the exacerbation and two weeks later.</p

    Hepatopulmonary syndrome in patients with chronic liver disease: role of pulse oximetry

    Get PDF
    BACKGROUND: Hepatopulmonary syndrome (HPS) is a rare complication of liver diseases of different etiologies and may indicate a poor prognosis. Therefore, a simple non-invasive screening method to detect HPS would be highly desirable. In this study pulse oximetry was evaluated to identify patients with HPS. METHODS: In 316 consecutive patients with liver cirrhosis (n = 245), chronic hepatitis (n = 69) or non-cirrhotic portal hypertension (n = 2) arterial oxygen saturation (SaO(2)) was determined using a pulse oximeter. In patients with SaO(2 )≤92% in supine position and/or a decrease of ≥4% after change from supine to upright position further diagnostic procedures were performed, including contrast-enhanced echocardiography and perfusion lung scan. RESULTS: Seventeen patients (5.4%) had a pathological SaO(2). Four patients (1.3%) had HPS. HPS patients had a significant lower mean SaO(2 )in supine (89.7%, SD 5.4 vs. 96.0%, SD 2.3; p = 0.003) and upright position (84.3%, SD 5.0 vs. 96.0%, SD 2.4; p = 0.001) and had a lower mean PaO(2 )(56.2 mm Hg, SD 15.2 vs. 71.2 mm Hg, SD 20.2; p = 0.02) as compared to patients without HPS. The mean ΔSaO(2 )(difference between supine and upright position) was 5.50 (SD 7) in HPS patients compared to non-HPS patients who showed no change (p = 0.001). There was a strong correlation between shunt volume and the SaO(2 )values (R = -0.94). CONCLUSION: Arterial SaO(2 )determination in supine and upright position is a useful non-invasive screening test for HPS and correlates well with the intrapulmonary shunt volume

    MRC chronic Dyspnea Scale: Relationships with cardiopulmonary exercise testing and 6-minute walk test in idiopathic pulmonary fibrosis patients: a prospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Exertional dyspnea is the most prominent and disabling feature in idiopathic pulmonary fibrosis (IPF). The Medical Research Chronic (MRC) chronic dyspnea score as well as physiological measurements obtained during cardiopulmonary exercise testing (CPET) and the 6-minute walk test (6MWT) are shown to provide information on the severity and survival of disease.</p> <p>Methods</p> <p>We prospectively recruited IPF patients and examined the relationship between the MRC score and either CPET or 6MWT parameters known to reflect physiologic derangements limiting exercise capacity in IPF patients</p> <p>Results</p> <p>Twenty-five patients with IPF were included in the study. Significant correlations were found between the MRC score and the distance (r = -.781, p < 0.001), the SPO<sub>2 </sub>at the initiation and the end (r = -.542, p = 0.005 and r = -.713, p < 0.001 respectively) and the desaturation index (r = .634, p = 0.001) for the 6MWT; the MRC score and <it>V</it>O<sub>2 </sub>peak/kg (r = -.731, p < 0.001), SPO<sub>2 </sub>at peak exercise (r = -. 682, p < 0.001), VE/VCO<sub>2 </sub>slope (r = .731, p < 0.001), VE/VCO<sub>2 </sub>at AT (r = .630, p = 0.002) and the Borg scale at peak exercise (r = .50, p = 0.01) for the CPET. In multiple logistic regression analysis, the only variable independently related to the MRC is the distance walked at the 6MWT.</p> <p>Conclusion</p> <p>In this population of IPF patients a good correlation was found between the MRC chronic dyspnoea score and physiological parameters obtained during maximal and submaximal exercise testing known to reflect ventilatory impairment and exercise limitation as well as disease severity and survival. This finding is described for the first time in the literature in this group of patients as far as we know and could explain why a simple chronic dyspnea score provides reliable prognostic information on IPF.</p

    The Influence of Radiographic Phenotype and Smoking Status on Peripheral Blood Biomarker Patterns in Chronic Obstructive Pulmonary Disease

    Get PDF
    Background: Chronic obstructive pulmonary disease (COPD) is characterized by both airway remodeling and parenchymal destruction. The identification of unique biomarker patterns associated with airway dominant versus parenchymal dominant patterns would support the existence of unique phenotypes representing independent biologic processes. A cross-sectional study was performed to examine the association of serum biomarkers with radiographic airway and parenchymal phenotypes of COPD. Methodology/Principal Findings: Serum from 234 subjects enrolled in a CT screening cohort was analyzed for 33 cytokines and growth factors using a multiplex protein array. The association of serum markers with forced expiratory volume in one second percent predicted (FEV1%) and quantitative CT measurements of airway thickening and emphysema was assessed with and without stratification for current smoking status. Significant associations were found with several serum inflammatory proteins and measurements of FEV1%, airway thickening, and parenchymal emphysema independent of smoking status. The association of select analytes with airway thickening and emphysema was independent of FEV1%. Furthermore, the relationship between other inflammatory markers and measurements of physiologic obstruction or airway thickening was dependent on current smoking status. Conclusions/Significance: Airway and parenchymal phenotypes of COPD are associated with unique systemic serum biomarker profiles. Serum biomarker patterns may provide a more precise classification of the COPD syndrome, provide insights into disease pathogenesis and identify targets for novel patient-specific biological therapies. © 2009 Bon et al

    Chronic Obstructive Pulmonary Disease, inflammation and co-morbidity – a common inflammatory phenotype?

    Get PDF
    Chronic Obstructive Pulmonary Disease (COPD) is and will remain a major cause of morbidity and mortality worldwide. The severity of airflow obstruction is known to relate to overall health status and mortality. However, even allowing for common aetiological factors, a link has been identified between COPD and other systemic diseases such as cardiovascular disease, diabetes and osteoporosis. COPD is known to be an inflammatory condition and neutrophil elastase has long been considered a significant mediator of the disease. Pro-inflammatory cytokines, in particular TNF-α (Tumour Necrosis Factor alpha), may be the driving force behind the disease process. However, the roles of inflammation and these pro-inflammatory cytokines may extend beyond the lungs and play a part in the systemic effects of the disease and associated co-morbidities. This article describes the mechanisms involved and proposes a common inflammatory TNF-α phenotype that may, in part, account for the associations
    corecore