1,904 research outputs found
Male sperm whale acoustic behavior observed from multipaths at a single hydrophone
Sperm whales generate transient sounds (clicks) when foraging. These clicks have been described as echolocation sounds, a result of having measured the source level and the directionality of these signals and having extrapolated results from biosonar tests made on some small odontocetes. The authors propose a passive acoustic technique requiring only one hydrophone to investigate the acoustic behavior of free-ranging sperm whales. They estimate whale pitch angles from the multipath distribution of click energy. They emphasize the close bond between the sperm whale’s physical and acoustic activity, leading to the hypothesis that sperm whales might, like some small odontocetes, control click level and rhythm. An echolocation model estimating the range of the sperm whale’s targets from the interclick interval is computed and tested during different stages of the whale’s dive. Such a hypothesis on the echolocation process would indicate that sperm whales echolocate their prey layer when initiating their dives and follow a methodic technique when foraging
Experimental realization of an ideal Floquet disordered system
The atomic Quantum Kicked Rotor is an outstanding "quantum simulator" for the
exploration of transport in disordered quantum systems. Here we study
experimentally the phase-shifted quantum kicked rotor, which we show to display
properties close to an ideal disordered quantum system, opening new windows
into the study of Anderson physics.Comment: 10 pages, 7 figures, submitted to New Journal of Physics focus issue
on Quantum Transport with Ultracold Atom
- …