1,088 research outputs found
Unanswered Questions in the Electroweak Theory
This article is devoted to the status of the electroweak theory on the eve of
experimentation at CERN's Large Hadron Collider. A compact summary of the logic
and structure of the electroweak theory precedes an examination of what
experimental tests have established so far. The outstanding unconfirmed
prediction of the electroweak theory is the existence of the Higgs boson, a
weakly interacting spin-zero particle that is the agent of electroweak symmetry
breaking, the giver of mass to the weak gauge bosons, the quarks, and the
leptons. General arguments imply that the Higgs boson or other new physics is
required on the TeV energy scale. Indirect constraints from global analyses of
electroweak measurements suggest that the mass of the standard-model Higgs
boson is less than 200 GeV. Once its mass is assumed, the properties of the
Higgs boson follow from the electroweak theory, and these inform the search for
the Higgs boson. Alternative mechanisms for electroweak symmetry breaking are
reviewed, and the importance of electroweak symmetry breaking is illuminated by
considering a world without a specific mechanism to hide the electroweak
symmetry.
For all its triumphs, the electroweak theory has many shortcomings. . . .Comment: 31 pages, 20 figures; prepared for Annual Review of Nuclear and
Particle Science (minor changes
Is Our Universe Natural?
It goes without saying that we are stuck with the universe we have.
Nevertheless, we would like to go beyond simply describing our observed
universe, and try to understand why it is that way rather than some other way.
Physicists and cosmologists have been exploring increasingly ambitious ideas
that attempt to explain why certain features of our universe aren't as
surprising as they might first appear.Comment: Invited review for Nature, 11 page
Starobinsky-like inflation in no-scale supergravity Wess-Zumino model with Polonyi term
We propose a simple modification of the no-scale supergravity Wess-Zumino
model of Starobinsky-like inflation to include a Polonyi term in the
superpotential. The purpose of this term is to provide an explicit mechanism
for supersymmetry breaking at the end of inflation. We show how successful
inflation can be achieved for a gravitino mass satisfying the strict upper
bound TeV, with favoured values
TeV. The model suggests that SUSY may be discovered in collider physics
experiments such as the LHC or the FCC.Comment: 13 pages, 4 figure
Phase Transitions of Charged Scalars at Finite Temperature and Chemical Potential
We calculate the grand canonical partition function at the one-loop level for
scalar quantum electrodynamics at finite temperature and chemical potential. A
classical background charge density with a charge opposite that of the scalars
ensures the neutrality of the system. For low density systems we find evidence
of a first order phase transition. We find upper and lower bounds on the
transition temperature below which the charged scalars form a condensate. A
first order phase transition may have consequences for helium-core white dwarf
stars in which it has been argued that such a condensate of charged helium-4
nuclei could exist.Comment: 20 pages, 3 figures. Version accepted for publication in JHE
Gravity waves and the LHC: Towards high-scale inflation with low-energy SUSY
It has been argued that rather generic features of string-inspired
inflationary theories with low-energy supersymmetry (SUSY) make it difficult to
achieve inflation with a Hubble scale H > m_{3/2}, where m_{3/2} is the
gravitino mass in the SUSY-breaking vacuum state. We present a class of
string-inspired supergravity realizations of chaotic inflation where a simple,
dynamical mechanism yields hierarchically small scales of post-inflationary
supersymmetry breaking. Within these toy models we can easily achieve small
ratios between m_{3/2} and the Hubble scale of inflation. This is possible
because the expectation value of the superpotential relaxes from large to
small values during the course of inflation. However, our toy models do not
provide a reasonable fit to cosmological data if one sets the SUSY-breaking
scale to m_{3/2} < TeV. Our work is a small step towards relieving the apparent
tension between high-scale inflation and low-scale supersymmetry breaking in
string compactifications.Comment: 21+1 pages, 5 figures, LaTeX, v2: added references, v3: very minor
changes, version to appear in JHE
Universality of the Volume Bound in Slow-Roll Eternal Inflation
It has recently been shown that in single field slow-roll inflation the total
volume cannot grow by a factor larger than e^(S_dS/2) without becoming
infinite. The bound is saturated exactly at the phase transition to eternal
inflation where the probability to produce infinite volume becomes non zero. We
show that the bound holds sharply also in any space-time dimensions, when
arbitrary higher-dimensional operators are included and in the multi-field
inflationary case. The relation with the entropy of de Sitter and the
universality of the bound strengthen the case for a deeper holographic
interpretation. As a spin-off we provide the formalism to compute the
probability distribution of the volume after inflation for generic multi-field
models, which might help to address questions about the population of vacua of
the landscape during slow-roll inflation.Comment: 24 pages, 5 figure
The CMB and the measure of the multiverse
In the context of eternal inflation, cosmological predictions depend on the
choice of measure to regulate the diverging spacetime volume. The spectrum of
inflationary perturbations is no exception, as we demonstrate by comparing the
predictions of the fat geodesic and causal patch measures. To highlight the
effect of the measure---as opposed to any effects related to a possible
landscape of vacua---we take the cosmological model, including the model of
inflation, to be fixed. We also condition on the average CMB temperature
accompanying the measurement. Both measures predict a 1-point expectation value
for the gauge-invariant Newtonian potential, which takes the form of a
(scale-dependent) monopole, in addition to a related contribution to the
3-point correlation function, with the detailed form of these quantities
differing between the measures. However, for both measures both effects are
well within cosmic variance. Our results make clear the theoretical relevance
of the measure, and at the same time validate the standard inflationary
predictions in the context of eternal inflation.Comment: 28 pages; v2: reference added, some clarification
Dynamical Mean-Field Theory within an Augmented Plane-Wave Framework: Assessing Electronic Correlations in the Iron Pnictide LaFeAsO
We present an approach that combines the local density approximation (LDA)
and the dynamical mean-field theory (DMFT) in the framework of the
full-potential linear augmented plane waves (FLAPW) method. Wannier-like
functions for the correlated shell are constructed by projecting local orbitals
onto a set of Bloch eigenstates located within a certain energy window. The
screened Coulomb interaction and Hund's coupling are calculated from a
first-principle constrained RPA scheme. We apply this LDA+DMFT implementation,
in conjunction with continuous-time quantum Monte-Carlo, to study the
electronic correlations in LaFeAsO. Our findings support the physical picture
of a metal with intermediate correlations. The average value of the mass
renormalization of the Fe 3d bands is about 1.6, in reasonable agreement with
the picture inferred from photoemission experiments. The discrepancies between
different LDA+DMFT calculations (all technically correct) which have been
reported in the literature are shown to have two causes: i) the specific value
of the interaction parameters used in these calculations and ii) the degree of
localization of the Wannier orbitals chosen to represent the Fe 3d states, to
which many-body terms are applied. The latter is a fundamental issue in the
application of many-body calculations, such as DMFT, in a realistic setting. We
provide strong evidence that the DMFT approximation is more accurate and more
straightforward to implement when well-localized orbitals are constructed from
a large energy window encompassing Fe-3d, As-4p and O-2p, and point out several
difficulties associated with the use of extended Wannier functions associated
with the low-energy iron bands. Some of these issues have important physical
consequences, regarding in particular the sensitivity to the Hund's coupling.Comment: 16 pages, 9 figures, published versio
On Inflation with Non-minimal Coupling
A simple realization of inflation consists of adding the following operators
to the Einstein-Hilbert action: (partial phi)^2, lambda phi^4, and xi phi^2 R,
with xi a large non-minimal coupling. Recently there has been much discussion
as to whether such theories make sense quantum mechanically and if the inflaton
phi can also be the Standard Model Higgs. In this note we answer these
questions. Firstly, for a single scalar phi, we show that the quantum field
theory is well behaved in the pure gravity and kinetic sectors, since the
quantum generated corrections are small. However, the theory likely breaks down
at ~ m_pl / xi due to scattering provided by the self-interacting potential
lambda phi^4. Secondly, we show that the theory changes for multiple scalars
phi with non-minimal coupling xi phi dot phi R, since this introduces
qualitatively new interactions which manifestly generate large quantum
corrections even in the gravity and kinetic sectors, spoiling the theory for
energies > m_pl / xi. Since the Higgs doublet of the Standard Model includes
the Higgs boson and 3 Goldstone bosons, it falls into the latter category and
therefore its validity is manifestly spoiled. We show that these conclusions
hold in both the Jordan and Einstein frames and describe an intuitive analogy
in the form of the pion Lagrangian. We also examine the recent claim that
curvature-squared inflation models fail quantum mechanically. Our work appears
to go beyond the recent discussions.Comment: 14 pages, 2 figures. Version 2: Clarified findings and improved
wording. Elaborated important sections and removed an unnecessary section.
Added references. Version 3: Updated towards JHEP version. Version 4: Final
JHEP versio
- …