5,726 research outputs found

    Spectral action, Weyl anomaly and the Higgs-Dilaton potential

    Full text link
    We show how the bosonic spectral action emerges from the fermionic action by the renormalization group flow in the presence of a dilaton and the Weyl anomaly. The induced action comes out to be basically the Chamseddine-Connes spectral action introduced in the context of noncommutative geometry. The entire spectral action describes gauge and Higgs fields coupled with gravity. We then consider the effective potential and show, that it has the desired features of a broken and an unbroken phase, with the roll down.Comment: 23 pages, 4 figure

    We Can and Must Understand Computers NOW

    Full text link

    Structure Dependence of Kinetic and Thermodynamic Parameters in Singlet Fission Processes

    Get PDF
    Singlet fission—whereby one absorbed photon generates two coupled triplet excitons—is a key process for increasing the efficiency of optoelectronic devices by overcoming the Shockley–Queisser limit. A crucial parameter is the rate of dissociation of the coupled triplets, as this limits the number of free triplets subsequently available for harvesting and ultimately the overall efficiency of the device. Here we present an analysis of the thermodynamic and kinetic parameters for this process in parallel and herringbone dimers measured by electron paramagnetic resonance spectroscopy in coevaporated films of pentacene in p-terphenyl. The rate of dissociation is higher for parallel dimers than for their herringbone counterparts, as is the rate of recombination to the ground state. DFT calculations, which provide the magnitude of the electronic coupling as well as the distribution of molecular orbitals for each geometry, suggest that weaker triplet coupling in the parallel dimer is the driving force for faster dissociation. Conversely, localization of the molecular orbitals and a stronger triplet–triplet interaction result in slower dissociation and recombination. The identification and understanding of how the intermolecular geometry promotes efficient triplet dissociation provide the basis for control of triplet coupling and thereby the optimization of one important parameter of device performance

    Two experiments for the price of one? -- The role of the second oscillation maximum in long baseline neutrino experiments

    Get PDF
    We investigate the quantitative impact that data from the second oscillation maximum has on the performance of wide band beam neutrino oscillation experiments. We present results for the physics sensitivities to standard three flavor oscillation, as well as results for the sensitivity to non-standard interactions. The quantitative study is performed using an experimental setup similar to the Fermilab to DUSEL Long Baseline Neutrino Experiment (LBNE). We find that, with the single exception of sensitivity to the mass hierarchy, the second maximum plays only a marginal role due to the experimental difficulties to obtain a statistically significant and sufficiently background-free event sample at low energies. This conclusion is valid for both water Cherenkov and liquid argon detectors. Moreover, we confirm that non-standard neutrino interactions are very hard to distinguish experimentally from standard three-flavor effects and can lead to a considerable loss of sensitivity to \theta_{13}, the mass hierarchy and CP violation.Comment: RevTex 4.1, 23 pages, 10 figures; v2: Typos corrected, very minor clarifications; matches published version; v3: Fixed a typo in the first equation in sec. III

    Lifestyle Intervention Using an Internet-Based Curriculum with Cell Phone Reminders for Obese Chinese Teens: A Randomized Controlled Study

    Get PDF
    Objectives Obesity is an increasing public health problem affecting young people. The causes of obesity are multi-factorial among Chinese youth including lack of physical activity and poor eating habits. The use of an internet curriculum and cell phone reminders and texting may be an innovative means of increasing follow up and compliance with obese teens. The objectives of this study were to determine the feasibility of using an adapted internet curriculum and existing nutritional program along with cell phone follow up for obese Chinese teens. Design and Methods This was a randomized controlled study involving obese teens receiving care at a paediatric obesity clinic of a tertiary care hospital in Hong Kong. Forty-eight subjects aged 12 to 18 years were randomized into three groups. The control group received usual care visits with a physician in the obesity clinic every three months. The first intervention (IT) group received usual care visits every three months plus a 12-week internet-based curriculum with cell phone calls/texts reminders. The second intervention group received usual care visits every three months plus four nutritional counselling sessions. Results The use of the internet-based curriculum was shown to be feasible as evidenced by the high recruitment rate, internet log-in rate, compliance with completing the curriculum and responses to phone reminders. No significant differences in weight were found between IT, sLMP and control groups. Conclusion An internet-based curriculum with cell phone reminders as a supplement to usual care of obesity is feasible. Further study is required to determine whether an internet plus text intervention can be both an effective and a cost-effective adjunct to changing weight in obese youth. Trial Registration Chinese Clinical Trial Registry ChiCTR-TRC-12002624published_or_final_versio

    Hypercharge and the Cosmological Baryon Asymmetry

    Full text link
    Stringent bounds on baryon and lepton number violating interactions have been derived from the requirement that such interactions, together with electroweak instantons, do not destroy a cosmological baryon asymmetry produced at an extremely high temperature in the big bang. While these bounds apply in specific models, we find that they are generically evaded. In particular, the only requirement for a theory to avoid these bounds is that it contain charged particles which, during a certain cosmological epoch, carry a non-zero hypercharge asymmetry. Hypercharge neutrality of the universe then dictates that the remaining particles must carry a compensating hypercharge density, which is necessarily shared amongst them so as to give a baryon asymmetry. Hence the generation of a hypercharge density in a sector of the theory forces the universe to have a baryon asymmetry.Comment: 12 pages plus 1 Postscript figure available upon request. LBL 3482

    Random vector functional link networks for function approximation on manifolds

    Get PDF
    The learning speed of feed-forward neural networks is notoriously slow and has presented a bottleneck in deep learning applications for several decades. For instance, gradient-based learning algorithms, which are used extensively to train neural networks, tend to work slowly when all of the network parameters must be iteratively tuned. To counter this, both researchers and practitioners have tried introducing randomness to reduce the learning requirement. Based on the original construction of Igelnik and Pao, single layer neural-networks with random input-to-hidden layer weights and biases have seen success in practice, but the necessary theoretical justification is lacking. In this study, we begin to fill this theoretical gap. We then extend this result to the non-asymptotic setting using a concentration inequality for Monte-Carlo integral approximations. We provide a (corrected) rigorous proof that the Igelnik and Pao construction is a universal approximator for continuous functions on compact domains, with approximation error squared decaying asymptotically like O(1/n) for the number n of network nodes. We then extend this result to the non-asymptotic setting, proving that one can achieve any desired approximation error with high probability provided n is sufficiently large. We further adapt this randomized neural network architecture to approximate functions on smooth, compact submanifolds of Euclidean space, providing theoretical guarantees in both the asymptotic and non-asymptotic forms. Finally, we illustrate our results on manifolds with numerical experiments
    • 

    corecore