27 research outputs found
On renormalization group flows and the a-theorem in 6d
We study the extension of the approach to the a-theorem of Komargodski and
Schwimmer to quantum field theories in d=6 spacetime dimensions. The dilaton
effective action is obtained up to 6th order in derivatives. The anomaly flow
a_UV - a_IR is the coefficient of the 6-derivative Euler anomaly term in this
action. It then appears at order p^6 in the low energy limit of n-point
scattering amplitudes of the dilaton for n > 3. The detailed structure with the
correct anomaly coefficient is confirmed by direct calculation in two examples:
(i) the case of explicitly broken conformal symmetry is illustrated by the free
massive scalar field, and (ii) the case of spontaneously broken conformal
symmetry is demonstrated by the (2,0) theory on the Coulomb branch. In the
latter example, the dilaton is a dynamical field so 4-derivative terms in the
action also affect n-point amplitudes at order p^6. The calculation in the
(2,0) theory is done by analyzing an M5-brane probe in AdS_7 x S^4.
Given the confirmation in two distinct models, we attempt to use dispersion
relations to prove that the anomaly flow is positive in general. Unfortunately
the 4-point matrix element of the Euler anomaly is proportional to stu and
vanishes for forward scattering. Thus the optical theorem cannot be applied to
show positivity. Instead the anomaly flow is given by a dispersion sum rule in
which the integrand does not have definite sign. It may be possible to base a
proof of the a-theorem on the analyticity and unitarity properties of the
6-point function, but our preliminary study reveals some difficulties.Comment: 41 pages, 5 figure
The deuteron: structure and form factors
A brief review of the history of the discovery of the deuteron in provided.
The current status of both experiment and theory for the elastic electron
scattering is then presented.Comment: 80 pages, 33 figures, submited to Advances in Nuclear Physic