2 research outputs found

    Discovery of a multiply lensed submillimeter galaxy in early HerMES Herschel/SPIRE data

    Get PDF
    ‘In these times, during the rise in the popularity of institutional repositories, the Society does not forbid authors from depositing their work in such repositories. However, the AAS regards the deposit of scholarly work in such repositories to be a decision of the individual scholar, as long as the individual's actions respect the diligence of the journals and their reviewers.’ Original article can be found at: http://iopscience.iop.org/ Copyright American Astronomical SocietyWe report the discovery of a bright (f (250 μm)>400 mJy), multiply lensed submillimeter galaxy HERMES J105751.1+573027 in Herschel/SPIRE Science Demonstration Phase data from the HerMES project. Interferometric 880 μm Submillimeter Array observations resolve at least four images with a large separation of ∼9″. A high-resolution adaptive optics Kp image with Keck/NIRC2 clearly shows strong lensing arcs. Follow-up spectroscopy gives a redshift of z = 2.9575, and the lensing model gives a total magnification of μ ∼ 11 ± 1. The large image separation allows us to study the multi-wavelength spectral energy distribution (SED) of the lensed source unobscured by the central lensing mass. The far-IR/millimeter-wave SED is well described by a modified blackbody fit with an unusually warm dust temperature, 88 ± 3 K. We derive a lensing-corrected total IR luminosity of (1.43 ± 0.09) × 1013 L⊙, implying a star formation rate of ∼2500 M⊙ yr-1. However, models primarily developed from brighter galaxies selected at longer wavelengths are a poor fit to the full optical-to-millimeter SED. A number of other strongly lensed systems have already been discovered in early Herschel data, and many more are expected as additional data are collected.Peer reviewe

    Response of ATP sulfurylase and serine acetyltransferase towards cadmium in hyperaccumulator Sedum alfredii Hance*

    No full text
    We studied the responses of the activities of adenosine-triphosphate (ATP) sulfurylase (ATPS) and serine acetyltransferase (SAT) to cadmium (Cd) levels and treatment time in hyperaccumulating ecotype (HE) Sedum alfredii Hance, as compared with its non-hyperaccumulating ecotype (NHE). The results show that plant growth was inhibited in NHE but promoted in HE when exposed to high Cd level. Cd concentrations in leaves and shoots rapidly increased in HE rather than in NHE, and they became much higher in HE than in NHE along with increasing treatment time and Cd supply levels. ATPS activity was higher in HE than in NHE in all Cd treatments, and increased with increasing Cd supply levels in both HE and NHE when exposed to Cd treatment within 8 h. However, a marked difference of ATPS activity between HE and NHE was found with Cd treatment for 168 h, where ATPS activity increased in HE but decreased in NHE. Similarly, SAT activity was higher in HE than in NHE at all Cd treatments, but was more sensitive in NHE than in HE. Both ATPS and SAT activities in NHE leaves tended to decrease with increasing treatment time after 8 h at all Cd levels. The results reveal the different responses in sulfur assimilation enzymes and Cd accumulation between HE and NHE. With increasing Cd stress, the activities of sulfur assimilation enzymes (ATPS and SAT) were induced in HE, which may contribute to Cd accumulation in the hyperaccumulator Sedum alfredii Hance
    corecore