57 research outputs found

    Strange and charm quark-pair production in strong non-Abelian field

    Full text link
    We have investigated strange and charm quark-pair production in the early stage of heavy ion collisions. Our kinetic model is based on a Wigner function method for fermion-pair production in strong non-Abelian fields. To describe the overlap of two colliding heavy ions we have applied the time-dependent color field with a pulse-like shape. The calculations have been performed in an SU(2)-color model with finite current quark masses. For strange quark-pair production the obtained results are close to the Schwinger limit, as we expected. For charm quark the large inverse temporal width of the field pulse, instead of the large charm quark mass, determines the efficiency of the quark-pair production. Thus we do not observe the expected suppression of charm quark-pair production connecting to the usual Schwinger-formalism, but our calculation results in a relatively large charm quark yield. This effect appears in Abelian models as well, demonstrating that particle-pair production for fast varying non-Abelian gluon field strongly deviates from the Schwinger limit for charm quark. We display our results on number densities for light, strange, charm quark-pairs, and different suppression factors as the function of characteristic time of acting chromo-electric field.Comment: 6 pages, 2 figures; to appear in the proceedings of the International Conference on Strangeness in Quark matter (SQM2008), Beijing, China, Oct 6-10, 2008; version accepted to J. Phys.

    Observable effects caused by vacuum pair creation in the field of high-power optical lasers

    Full text link
    We consider the possibility of an experimental proof of vacuum e+e- pair creation in the focus of two counter-propagating optical laser beams with an intensity of the order of 10^20 - 10^22 W/cm^2. Our approach is based on the collisionless kinetic equation for the distribution function of the e+e- pairs with the source term for particle production. As a possible experimental signal of vacuum pair production we consider the refraction of a high-frequency probe laser beam by the produced e+e- plasma to be observed by an interference filter. The generation of higher harmonics of the laser frequency in the self-consistent electric field is also investigated.Comment: 7 pages, 7 figures; typos corrected, Eq.(16) corrected, reference adde

    Pair creation and plasma oscillations

    Get PDF
    We describe aspects of particle creation in strong fields using a quantum kinetic equation with a relaxation-time approximation to the collision term. The strong electric background field is determined by solving Maxwell's equation in tandem with the Vlasov equation. Plasma oscillations appear as a result of feedback between the background field and the field generated by the particles produced. The plasma frequency depends on the strength of the initial background field and the collision frequency, and is sensitive to the necessary momentum-dependence of dressed-parton masses.Comment: 11 pages, revteX, epsfig.sty, 5 figures; Proceedings of 'Quark Matter in Astro- and Particlephysics', a workshop at the University of Rostock, Germany, November 27 - 29, 2000. Eds. D. Blaschke, G. Burau, S.M. Schmid
    corecore