1,566 research outputs found

    Locking Local Oscillator Phase to the Atomic Phase via Weak Measurement

    Full text link
    We propose a new method to reduce the frequency noise of a Local Oscillator (LO) to the level of white phase noise by maintaining (not destroying by projective measurement) the coherence of the ensemble pseudo-spin of atoms over many measurement cycles. This scheme uses weak measurement to monitor the phase in Ramsey method and repeat the cycle without initialization of phase and we call, "atomic phase lock (APL)" in this paper. APL will achieve white phase noise as long as the noise accumulated during dead time and the decoherence are smaller than the measurement noise. A numerical simulation confirms that with APL, Allan deviation is averaged down at a maximum rate that is proportional to the inverse of total measurement time, tau^-1. In contrast, the current atomic clocks that use projection measurement suppress the noise only down to the level of white frequency, in which case Allan deviation scales as tau^-1/2. Faraday rotation is one of the possible ways to realize weak measurement for APL. We evaluate the strength of Faraday rotation with 171Yb+ ions trapped in a linear rf-trap and discuss the performance of APL. The main source of the decoherence is a spontaneous emission induced by the probe beam for Faraday rotation measurement. One can repeat the Faraday rotation measurement until the decoherence become comparable to the SNR of measurement. We estimate this number of cycles to be ~100 cycles for a realistic experimental parameter.Comment: 18 pages, 7 figures, submitted to New Journal of Physic

    Pyrochlore Antiferromagnet: A Three-Dimensional Quantum Spin Liquid

    Full text link
    The quantum pyrochlore antiferromagnet is studied by perturbative expansions and exact diagonalization of small clusters. We find that the ground state is a spin-liquid state: The spin-spin correlation functions decay exponentially with distance and the correlation length never exceeds the interatomic distance. The calculated magnetic neutron diffraction cross section is in very good agreement with experiments performed on Y(Sc)Mn2. The low energy excitations are singlet-singlet ones, with a finite spin gap.Comment: 4 pages, 4 figure

    Buffer gas induced collision shift for the 88^{88}Sr 1S03P1\bf{^1S_0-^3P_1} clock transition

    Full text link
    Precision saturation spectroscopy of the 88Sr1S03P1^{88}{\rm Sr} ^1S_0-^3P_1 is performed in a vapor cell filled with various rare gas including He, Ne, Ar, and Xe. By continuously calibrating the absolute frequency of the probe laser, buffer gas induced collision shifts of \sim kHz are detected with gas pressure of 1-20 mTorr. Helium gave the largest fractional shift of 1.6×109Torr11.6 \times 10^{-9} {\rm Torr}^{-1}. Comparing with a simple impact calculation and a Doppler-limited experiment of Holtgrave and Wolf [Phys. Rev. A {\bf 72}, 012711 (2005)], our results show larger broadening and smaller shifting coefficient, indicating effective atomic loss due to velocity changing collisions. The applicability of the result to the 1S03P0^1S_0-^3P_0 optical lattice clock transition is also discussed

    Mineralized Matrix Production by Osteoblasts on Solid Titanium In Vitro

    Get PDF
    Rat bone marrow cells were cultured on solid commercially pure titanium discs. Extracellular matrix (ECM) formed by the cells and the ECM/metal interface developed were examined by both scanning and transmission electron microscopy. The ECM most intimately associated with the substratum comprised afibrillar calcium phosphate globular accretions produced by the colonizing osteoblasts. The presence of calcium and phosphorus was confirmed by energy dispersive X-ray analysis. This initial layer acted as a site of anchorage for collagen fibres, produced by the osteoblasts. However, flaps of tissue elaborated during the culture period and manually reflected created a tissue division immediately above the afibrillar layer which indicated that the latter was adherent to the underlying metal oxide surface. The collagen matrix, consisting of networks of fibres, became mineralized with time in culture and also enveloped osteocytes which possessed radiating cell processes to form a bone nodule. This in vitro study suggests that while a calcified matrix layer, produced by osteoblasts, may adhere to titanium surfaces, subsequently formed bone is separated from this layer by a zone rich in both proteoglycans (as demonstrated by ruthenium red staining) and collagen fibres

    Deposition and Resorption of Calcified Matrix in Vitro by Rat Marrow Cells

    Get PDF
    Rat bone marrow derived cells were cultured using a-Minimal Essential Medium supplemented with antibiotics, ascorbic acid and !3-glycerphosphate in the presence of 10-8M dexamethasone, on polystyrene and hydrophilic fluorocarbon substrata for periods of 2 - 4 weeks. During this time, a large yield of bone nodules was achieved and the elaborated tissue was examined by both scanning and transmission electron microscopy. The matrix produced by the cells contacting the underlying substratum was an afibrillar, globular, calcified material which formed a layer approximately 0.5μm thick. The calcium and phosphorus content of this material was confirmed by energy dispersive X-ray dot mapping analysis. The collagenous matrix of the forming bone nodules was intimately associated with, and anchored to, this layer. The bulk of the bone nodule, above the interfacial zone, was of a normal appearance with osteocytes buried in a collagenous matrix exhibiting spheritic foci of mineralization. The cells, but not the extracellular matrix, of this culture were then removed using a trypsin citrate saline solution and the dishes containing these nodules reseeded with fresh bone marrow cells. These second stage cultures were maintained in supplemented medium, without dexamethasone. During this second period, osteoclasts resorbed both the afibrillar and collagen containing calcified matrices laid down in the first stage of the culture, producing characteristic scalloped osteoclast resorption lacunae

    Pressure Induced Quantum Critical Point and Non-Fermi-Liquid Behavior in BaVS3

    Full text link
    The phase diagram of BaVS3 is studied under pressure using resistivity measurements. The temperature of the metal to nonmagnetic Mott insulator transition decreases under pressure, and vanishes at the quantum critical point p_cr=20kbar. We find two kinds of anomalous conducting states. The high-pressure metallic phase is a non-Fermi liquid described by Delta rho = T^n where n=1.2-1.3 at 1K < T < 60K. At p<p_cr, the transition is preceded by a wide precursor region with critically increasing resistivity which we ascribe to the opening of a soft Coulomb gap.Comment: 4 pages, 5 eps figures, problem with figure correcte

    Circadian Organization in Hemimetabolous Insects

    Get PDF
    The circadian system of hemimetabolous insects is reviewed in respect to the locus of the circadian clock and multioscillatory organization. Because of relatively easy access to the nervous system, the neuronal organization of the clock system in hemimetabolous insects has been studied, yielding identification of the compound eye as the major photoreceptor for entrainment and the optic lobe for the circadian clock locus. The clock site within the optic lobe is inconsistent among reported species; in cockroaches the lobula was previously thought to be a most likely clock locus but accessory medulla is recently stressed to be a clock center, while more distal part of the optic lobe including the lamina and the outer medulla area for the cricket. Identification of the clock cells needs further critical studies. Although each optic lobe clock seems functionally identical, in respect to photic entrainment and generation of the rhythm, the bilaterally paired clocks form a functional unit. They interact to produce a stable time structure within individual insects by exchanging photic and temporal information through neural pathways, in which serotonin and pigment-dispersing factor (PDF) are involved as chemical messengers. The mutual interaction also plays an important role in seasonal adaptation of the rhythm

    Hubbard chains network on corner-sharing tetrahedra: origin of the heavy fermion state in LiV_2O_4

    Get PDF
    We investigate the Hubbard chains network model defined on corner-sharing tetrahedra (the pyrochlore lattice) which is a possible microscopic model for the heavy fermion state of LiV_2O_4. Based upon this model, we can explain transport, magnetic, and thermodynamic properties of LiV_2O_4. We calculate the spin susceptibility, and the specific heat coefficient, exploiting the Bethe ansatz exact solution of the 1D Hubbard model and bosonization method. The results are quite consistent with experimental observations. We obtain the large specific heat coefficient γ222mJ/molK2\gamma\sim 222 {\rm mJ/mol K^2}.Comment: 5 pages, 2 figures, a postscript file of Figure 1 is not included, to appear in Physical Review

    Temperature dependent Eu 3d-4f X-ray Absorption and Resonant Photoemission Study of the Valence Transition in EuNi2(Si0.2Ge0.8)2EuNi_2(Si_{0.2}Ge_{0.8})_2

    Full text link
    We study the mixed valence transition (TTv_{v} \sim80 K) in EuNi2_{2}(Si0.2_{0.2}Ge0.8_{0.8})2_{2} using Eu 3d4fd-4f X-ray absorption spectroscopy (XAS) and resonant photoemission spectroscopy (RESPES). The Eu2+^{2+} and Eu3+^{3+} main peaks show a giant resonance and the spectral features match very well with atomic multiplet calculations. The spectra show dramatic temperature (TT)-dependent changes over large energies (\sim10 eV) in RESPES and XAS. The observed non-integral mean valencies of \sim2.35 ±\pm 0.03 (TT = 120 K) and \sim2.70 ±\pm 0.03 (TT = 40 K) indicate homogeneous mixed valence above and below TTv_{v}. The redistribution between Eu2+^{2+}4f74f^7+[spd]0[spd]^0 and Eu3+^{3+}4f64f^6+[spd]1[spd]^1 states is attributed to a hybridization change coupled to a Kondo-like volume collapse.Comment: 4 pages, 3 figure
    corecore