3,825 research outputs found
Evidence of a bond-nematic phase in LiCuVO4
Polarized and unpolarized neutron scattering experiments on the frustrated
ferromagnetic spin-1/2 chain LiCuVO4 show that the phase transition at HQ of 8
Tesla is driven by quadrupolar fluctuations and that dipolar correlations are
short-range with moments parallel to the applied magnetic field in the
high-field phase. Heat-capacity measurements evidence a phase transition into
this high-field phase, with an anomaly clearly different from that at low
magnetic fields. Our experimental data are consistent with a picture where the
ground state above HQ has a next-nearest neighbour bond-nematic order along the
chains with a fluid-like coherence between weakly coupled chains.Comment: 5 pages, 4 figures. To appear in Phys. Rev. Let
Magnetic Properties of the low dimensional spin system (VO)PO: ESR and susceptibility
Experimental results on magnetic resonance (ESR) and magnetic susceptibility
are given for single crystalline (VO)PO. The crystal growth
procedure is briefly discussed. The susceptibility is interpreted numerically
using a model with alternating spin chains. We determine =51 K and
=0.2. Furthermore we find a spin gap of meV from our ESR
measurements. Using elastic constants no indication of a phase transition
forcing the dimerization is seen below 300 K.Comment: 7 pages, REVTEX, 7 figure
Dispersion and damping of zone-boundary magnons in the noncentrosymmetric superconductor CePt3Si
Inelastic neutron scattering (INS) is employed to study damped spin-wave
excitations in the noncentrosymmetric heavy-fermion superconductor CePt3Si
along the antiferromagnetic Brillouin-zone boundary in the low-temperature
magnetically ordered state. Measurements along the (1/2 1/2 L) and (H H 1/2-H)
reciprocal-space directions reveal deviations in the spin-wave dispersion from
the previously reported model. Broad asymmetric shape of the peaks in energy
signifies strong spin-wave damping by interactions with the particle-hole
continuum. Their energy width exhibits no evident anomalies as a function of
momentum along the (1/2 1/2 L) direction, which could be attributed to
Fermi-surface nesting effects, implying the absence of pronounced commensurate
nesting vectors at the magnetic zone boundary. In agreement with a previous
study, we find no signatures of the superconducting transition in the magnetic
excitation spectrum, such as a magnetic resonant mode or a superconducting spin
gap, either at the magnetic ordering wavevector (0 0 1/2) or at the zone
boundary. However, the low superconducting transition temperature in this
material still leaves the possibility of such features being weak and therefore
hidden below the incoherent background at energies ~0.1 meV, precluding their
detection by INS
Measurement of neutron detection efficiency between 22 and 174 MeV using two different kinds of Pb-scintillating fiber sampling calorimeters
We exposed a prototype of the lead-scintillating fiber KLOE calorimeter to
neutron beam of 21, 46 and 174 MeV at The Svedberg Laboratory, Uppsala, to
study its neutron detection efficiency. This has been found larger than what
expected considering the scintillator thickness of the prototype. %To check our
method, we measured also the neutron %detection efficiency of a 5 cm thick
NE110 scintillator. We show preliminary measurement carried out with a
different prototype with a larger lead/fiber ratio, which proves the relevance
of passive material to neutron detection efficiency in this kind of
calorimeters
New high magnetic field phase of the frustrated chain compound LiCuVO
Magnetization of the frustrated chain compound LiCuVO, focusing
on high magnetic field phases, is reported. Besides a spin-flop transition and
the transition from a planar spiral to a spin modulated structure observed
recently, an additional transition was observed just below the saturation
field. This newly observed magnetic phase is considered as a spin nematic
phase, which was predicted theoretically but was not observed experimentally.
The critical fields of this phase and its dM/dH curve are in good agreement
with calculations performed in a microscopic model (M. E. Zhitomirsky and H.
Tsunetsugu, preprint, arXiv:1003.4096v2).Comment: 5 pages, 4 figure
Light-ion production in the interaction of 96 MeV neutrons with oxygen
Double-differential cross sections for light-ion (p, d, t, He-3 and alpha)
production in oxygen, induced by 96 MeV neutrons are reported. Energy spectra
are measured at eight laboratory angles from 20 degrees to 160 degrees in steps
of 20 degrees. Procedures for data taking and data reduction are presented.
Deduced energy-differential and production cross sections are reported.
Experimental cross sections are compared to theoretical reaction model
calculations and experimental data at lower neutron energies in the literature.
The measured proton data agree reasonably well with the results of the model
calculations, whereas the agreement for the other particles is less convincing.
The measured production cross sections for protons, deuterons, tritons and
alpha particles support the trends suggested by data at lower energies.Comment: 21 pages, 13 figures, submitted to Phys. Rev.
Magnetic properties of (VO)_2P_2O_7: two-plane structure and spin-phonon interactions
Detailed experiments on single-crystal (VO)_2P_2O_7 continue to reveal new
and unexpected features. We show that a model composed of two, independent
planes of spin chains with frustrated magnetic coupling is consistent with
nuclear magnetic resonance and inelastic neutron scattering measurements. The
pivotal role of PO_4 groups in mediating intrachain exchange interactions
explains both the presence of two chain types and their extreme sensitivity to
certain lattice vibrations, which results in the strong magnetoelastic coupling
observed by light scattering. We compute the respective modifications of the
spin and phonon dynamics due to this coupling, and illustrate their observable
consequences on the phonon frequencies, magnon dispersions, static
susceptibility and specific heat.Comment: 10 pages, 9 figure
Magnetic Properties of (VO)_2P_2O_7 from Frustrated Interchain Coupling
Neutron-scattering experiments on (VO)_2P_2O_7 reveal both a gapped magnon
dispersion and an unexpected, low-lying second mode. The proximity and
intensity of these modes suggest a frustrated coupling between the alternating
spin chains. We deduce the minimal model containing such a frustration, and
show that it gives an excellent account of the magnon dispersion, static
susceptibility and electron spin resonance absorption. We consider two-magnon
states which bind due to frustration, and demonstrate that these may provide a
consistent explanation for the second mode.Comment: RevTeX, 5 pages, 6 figures, compressed from first versio
- âŠ