34 research outputs found

    STM Imaging of Flux Line Arrangements in the Peak Effect Regime

    Get PDF
    We present the results of a study of vortex arrangements in the peak-effect regime of 2H-NbSe_2 by scanning tunneling microscopy. By slowly increasing the temperature in a constant magnetic field, we observed a sharp transition from collective vortex motion to positional fluctuations of individual vortices at the temperature which coincides with the onset of the peak effect in ac-susceptibility. We conclude that the peak effect is a disorder driven transition, with the pinning energy winning from the elastic energy.Comment: 4 pages, 4 figures included Manuscript has been submitte

    Mode locking of vortex matter driven through mesoscopic channels

    Get PDF
    We investigated the driven dynamics of vortices confined to mesoscopic flow channels by means of a dc-rf interference technique. The observed mode-locking steps in the IVIV-curves provide detailed information on how the number of rows and lattice structure in the channel change with magnetic field. Minima in flow stress occur when an integer number of rows is moving coherently, while maxima appear when incoherent motion of mixed nn and n±1n\pm 1 row configurations is predominant. Simulations show that the enhanced pinning at mismatch originates from quasi-static fault zones with misoriented edge dislocations induced by disorder in the channel edges.Comment: some minor changes were made, 4 pages, 4 figures, accepted for publication in Phys. Rev. Let

    Mode-locking in ac-driven vortex lattices with random pinning

    Full text link
    We find mode-locking steps in simulated current-voltage characteristics of ac-driven vortex lattices with {\it random} pinning. For low frequencies there is mode-locking above a finite ac force amplitude, while for large frequencies there is mode-locking for any small ac force. This is correlated with the nature of temporal order in the different regimes in the absence of ac drive. The mode-locked state is a frozen solid pinned in the moving reference of frame, and the depinning from the step shows plastic flow and hysteresis.Comment: 4 pages, 4 figure

    Depinning and plasticity of driven disordered lattices

    Full text link
    We review in these notes the dynamics of extended condensed matter systesm, such as vortex lattices in type-II superconductors and charge density waves in anisotropic metals, driven over quenched disorder. We focus in particular on the case of strong disorder, where topological defects are generated in the driven lattice. In this case the repsonse is plastic and the depinning transition may become discontinuous and hysteretic.Comment: 21 pages, 6 figures. Proceedings the XIX Sitges Conference on Jamming, Yielding, and Irreversible Deformations in Condensed Matter, Sitges, Barcelona, Spain, June 14-18, 200

    Temporally ordered collective creep and dynamic transition in the charge-density-wave conductor NbSe3

    Full text link
    We have observed an unusual form of creep at low temperatures in the charge-density-wave (CDW) conductor NbSe3_3. This creep develops when CDW motion becomes limited by thermally-activated phase advance past individual impurities, demonstrating the importance of local pinning and related short-length-scale dynamics. Unlike in vortex lattices, elastic collective dynamics on longer length scales results in temporally ordered motion and a finite threshold field. A first-order dynamic phase transition from creep to high-velocity sliding produces "switching" in the velocity-field characteristic.Comment: 4 pages, 4 eps figures; minor clarifications To be published in Phys. Rev. Let

    Tunable Charge Density Wave Transport in a Current-Effect Transistor

    Full text link
    The collective charge density wave (CDW) conduction is modulated by a transverse single-particle current in a transistor-like device. Nonequilibrium conditions in this geometry lead to an exponential reduction of the depinning threshold, allowing the CDWs to slide for much lower bias fields. The results are in excellent agreement with a recently proposed dynamical model in which ''wrinkles'' in the CDW wavefronts are ''ironed'' by the transverse current. The experiment might have important implications for other driven periodic media, such as moving vortex lattices or ''striped phases'' in high-Tc superconductors.Comment: 4 pages, 4 figure

    Effect of pinning and driving force on the metastability effects in weakly pinned superconductors and the determination of spinodal line pertaining to order-disorder transition

    Get PDF
    We explore the effect of varying drive on metastability features exhibited by the vortex matter in single crystals of 2H-NbSe2_2 and CeRu2_2 with varying degree of random pinning. An optimal balance between the pinning and driving force is needed to view the metastability effects in typically weakly pinned specimen of low temperature superconductors. As one uses samples with larger pinning in order to differentiate the response of different metastable vortex states, one encounters a new phenomena, viz., the second magnetization peak (SMP) anomaly prior to the PE. Interplay between the path dependence in the critical current density and the non-linearity in the electromagnetic response determine the metastability effects seen in first and the third harmonic response of the ac susceptibility across the temperature regions of the SMP and the PE. The limiting temperature above which metastability effects cease can be conveniently located in the third harmonic data, and the observed behavior can be rationalized within the Beans Critical State model. A vortex phase diagram showing the different vortex phases for a typically weakly pinned specimen has been constructed via the ac susceptibility data in a crystal of 2H-NbSe2_2 which shows the SMP and the PE anomalies. The phase space of coexisting weaker and stronger pinned regions has been identified. It can be bifurcated into two parts, where the order and disorder dominate, respectively. The former part continuously connects to the reentrant disordered vortex phase pertaining to the small bundle pinning regime, where the vortices are far apart, interaction effects are weak and the polycrystalline form of flux line lattice prevails.Comment: Submitted to the Special Volume on Vortex State Studies, Pramana J. Phy

    Transverse depinning in strongly driven vortex lattices with disorder

    Full text link
    Using numerical simulations we investigate the transverse depinning of moving vortex lattices interacting with random disorder. We observe a finite transverse depinning barrier for vortex lattices that are driven with high longitudinal drives, when the vortex lattice is defect free and moving in correlated 1D channels. The transverse barrier is reduced as the longitudinal drive is decreased and defects appear in the vortex lattice, and the barrier disappears in the plastic flow regime. At the transverse depinning transition, the vortex lattice moves in a staircase pattern with a clear transverse narrow-band voltage noise signature.Comment: 4 pages, 4 figure

    Evolution in the split-peak structure across the Peak Effect region in single crystals of 2H2H-NbSe2_2

    Full text link
    We have explored the presence of a two-peak feature spanning the peak effect (PE) region in the ac susceptibility data and the magnetization hysteresis measurements over a wide field-temperature regime in few weakly pinned single crystals of 2H2H-NbSe2_2, which display reentrant characteristic in the PE curve near TcT_c(0). We believe that the two-peak feature evolves into distinct second magnetization peak anomaly well separated from the PE with gradual enhancement in the quenched random pinning.Comment: 9 figure

    Direct observation of the washboard noise of a driven vortex lattice in a high-temperature superconductor, Bi2Sr2CaCu2Oy

    Full text link
    We studied the conduction noise spectrum in the vortex state of a high-temperature superconductor, Bi2Sr2CaCu2Oy, subject to a uniform driving force. Two characteristic features, a broadband noise (BBN) and a narrow-band noise (NBN), were observed in the vortex-solid phase. The origin of the large BBN was determined to be plastic motion of the vortices, whereas the NBN was found to originate from the washboard modulation of the translational velocity of the driven vortices. We believe this to be the first observation ofComment: 4 pages, 4 figures, to appear in Phys. Rev. Let
    corecore