338 research outputs found

    Universal Parametric correlations at the soft edge of the spectrum of random matrix ensembles

    Full text link
    We extend a recent theory of parametric correlations in the spectrum of random matrices to study the response to an external perturbation of eigenvalues near the soft edge of the support. We demonstrate by explicit non-perturbative calculation that the two-point function for level density fluctuations becomes, after appropriate rescaling, a universal expression.Comment: 8 pages, written in TeX, Preprint OUTP-94-10S (University of Oxford

    Quantum dot to disordered wire crossover: A complete solution in all length scales for systems with unitary symmetry

    Full text link
    We present an exact solution of a supersymmetric nonlinear sigma model describing the crossover between a quantum dot and a disordered quantum wire with unitary symmetry. The system is coupled ideally to two electron reservoirs via perfectly conducting leads sustaining an arbitrary number of propagating channels. We obtain closed expressions for the first three moments of the conductance, the average shot-noise power and the average density of transmission eigenvalues. The results are complete in the sense that they are nonperturbative and are valid in all regimes and length scales. We recover several known results of the recent literature by taking particular limits.Comment: 4 page

    Conductance and Its Variance of Disordered Wires with Symplectic Symmetry in the Metallic Regime

    Full text link
    The conductance of disordered wires with symplectic symmetry is studied by a random-matrix approach. It has been shown that the behavior of the conductance in the long-wire limit crucially depends on whether the number of conducting channels is even or odd. We focus on the metallic regime where the wire length is much smaller than the localization length, and calculate the ensemble-averaged conductance and its variance for both the even- and odd-channel cases. We find that the weak-antilocalization correction to the conductance in the odd-channel case is equivalent to that in the even-channel case. Furthermore, we find that the variance dose not depend on whether the number of channels is even or odd. These results indicate that in contrast to the long-wire limit, clear even-odd differences cannot be observed in the metallic regime.Comment: 9pages, accepted for publication in JPS

    Intensity correlations in electronic wave propagation in a disordered medium: the influence of spin-orbit scattering

    Full text link
    We obtain explicit expressions for the correlation functions of transmission and reflection coefficients of coherent electronic waves propagating through a disordered quasi-one-dimensional medium with purely elastic diffusive scattering in the presence of spin-orbit interactions. We find in the metallic regime both large local intensity fluctuations and long-range correlations which ultimately lead to universal conductance fluctuations. We show that the main effect of spin-orbit scattering is to suppress both local and long-range intensity fluctuations by a universal symmetry factor 4. We use a scattering approach based on random transfer matrices.Comment: 15 pages, written in plain TeX, Preprint OUTP-93-42S (University of Oxford), to appear in Phys. Rev.

    Path Integral Approach to the Scattering Theory of Quantum Transport

    Full text link
    The scattering theory of quantum transport relates transport properties of disordered mesoscopic conductors to their transfer matrix \bbox{T}. We introduce a novel approach to the statistics of transport quantities which expresses the probability distribution of \bbox{T} as a path integral. The path integal is derived for a model of conductors with broken time reversal invariance in arbitrary dimensions. It is applied to the Dorokhov-Mello-Pereyra-Kumar (DMPK) equation which describes quasi-one-dimensional wires. We use the equivalent channel model whose probability distribution for the eigenvalues of \bbox{TT}^{\dagger} is equivalent to the DMPK equation independent of the values of the forward scattering mean free paths. We find that infinitely strong forward scattering corresponds to diffusion on the coset space of the transfer matrix group. It is shown that the saddle point of the path integral corresponds to ballistic conductors with large conductances. We solve the saddle point equation and recover random matrix theory from the saddle point approximation to the path integral.Comment: REVTEX, 9 pages, no figure

    Turbulence Hierarchy in a Random Fibre Laser

    Get PDF
    Turbulence is a challenging feature common to a wide range of complex phenomena. Random fibre lasers are a special class of lasers in which the feedback arises from multiple scattering in a one-dimensional disordered cavity-less medium. Here, we report on statistical signatures of turbulence in the distribution of intensity fluctuations in a continuous-wave-pumped erbium-based random fibre laser, with random Bragg grating scatterers. The distribution of intensity fluctuations in an extensive data set exhibits three qualitatively distinct behaviours: a Gaussian regime below threshold, a mixture of two distributions with exponentially decaying tails near the threshold, and a mixture of distributions with stretched-exponential tails above threshold. All distributions are well described by a hierarchical stochastic model that incorporates Kolmogorov's theory of turbulence, which includes energy cascade and the intermittence phenomenon. Our findings have implications for explaining the remarkably challenging turbulent behaviour in photonics, using a random fibre laser as the experimental platform.Comment: 9 pages, 5 figure

    Random-Matrix Theory of Electron Transport in Disordered Wires with Symplectic Symmetry

    Full text link
    The conductance of disordered wires with symplectic symmetry is studied by a random-matrix approach. It has been believed that Anderson localization inevitably arises in ordinary disordered wires. A counterexample is recently found in the systems with symplectic symmetry, where one perfectly conducting channel is present even in the long-wire limit when the number of conducting channels is odd. This indicates that the odd-channel case is essentially different from the ordinary even-channel case. To study such differences, we derive the DMPK equation for transmission eigenvalues for both the even- and odd- channel cases. The behavior of dimensionless conductance is investigated on the basis of the resulting equation. In the short-wire regime, we find that the weak-antilocalization correction to the conductance in the odd-channel case is equivalent to that in the even-channel case. We also find that the variance does not depend on whether the number of channels is even or odd. In the long-wire regime, it is shown that the dimensionless conductance in the even-channel case decays exponentially as --> 0 with increasing system length, while --> 1 in the odd-channel case. We evaluate the decay length for the even- and odd-channel cases and find a clear even-odd difference. These results indicate that the perfectly conducting channel induces clear even-odd differences in the long-wire regime.Comment: 28pages, 5figures, Accepted for publication in J. Phys. Soc. Jp
    • 

    corecore