644,357 research outputs found

    Superconducting Qubits Coupled to Nanoelectromechanical Resonators: An Architecture for Solid-State Quantum Information Processing

    Full text link
    We describe the design for a scalable, solid-state quantum-information-processing architecture based on the integration of GHz-frequency nanomechanical resonators with Josephson tunnel junctions, which has the potential for demonstrating a variety of single- and multi-qubit operations critical to quantum computation. The computational qubits are eigenstates of large-area, current-biased Josephson junctions, manipulated and measured using strobed external circuitry. Two or more of these phase qubits are capacitively coupled to a high-quality-factor piezoelectric nanoelectromechanical disk resonator, which forms the backbone of our architecture, and which enables coherent coupling of the qubits. The integrated system is analogous to one or more few-level atoms (the Josephson junction qubits) in an electromagnetic cavity (the nanomechanical resonator). However, unlike existing approaches using atoms in electromagnetic cavities, here we can individually tune the level spacing of the ``atoms'' and control their ``electromagnetic'' interaction strength. We show theoretically that quantum states prepared in a Josephson junction can be passed to the nanomechanical resonator and stored there, and then can be passed back to the original junction or transferred to another with high fidelity. The resonator can also be used to produce maximally entangled Bell states between a pair of Josephson junctions. Many such junction-resonator complexes can assembled in a hub-and-spoke layout, resulting in a large-scale quantum circuit. Our proposed architecture combines desirable features of both solid-state and cavity quantum electrodynamics approaches, and could make quantum information processing possible in a scalable, solid-state environment.Comment: 20 pages, 14 separate low-resolution jpeg figure

    Magnetic properties of geometrically frustrated SrGd2O4

    Full text link
    A study of the magnetic properties of the frustrated rare earth oxide SrGd2O4 has been completed using bulk property measurements of magnetization, susceptibility and specific heat on single crystal samples. Two zero-field phase transitions have been identified at 2.73 and 0.48 K. For the field, H, applied along the a and b axes, a single boundary is identified that delineates the transition from a low field, low temperature magnetically ordered regime to a high field, high temperature paramagnetic phase. Several field-induced transitions, however, have been observed with H || c. The measurements have been used to map out the magnetic phase diagram of SrGd2O4, suggesting that it is a complex system with several competing magnetic interactions. The low-temperature magnetic behavior of SrGd2O4 is very different compared to the other SrLn2O4 (Ln = Lanthanide) compounds, even though all of the SrLn2O4 compounds are isostructural, with the magnetic ions forming a low-dimensional lattice of zigzag chains that run along the c axis. The differences are likely to be due to the fact that in the ground state Gd3+ has zero orbital angular momentum and therefore the spin-orbit interactions, which are crucial for other SrLn2O4 compounds, can largely be neglected. Instead, given the relatively short Gd3+-Gd3+ distances in SrGd2O4, dipolar interactions must be taken into account for this antiferromagnet alongside the Heisenberg exchange terms.Comment: 10 pages, 9 figure

    Nitrogen and weed management in transplanted tomato in the Nigerian forest-savanna transition zone

    Get PDF
    Weed infestation and inherent low soil fertility are among primary reasons for low yields of tomato in Nigeria. Field trials were carried out during the wet season of 2015 and 2016 to evaluate yield response of tomato to nitrogen (N) application and weed control methods in the forest-savanna transition zone of Abeokuta, Nigeria. Positive relationship exists between growth of weed species and increase in N application. Across the years of study, increase in N up to 90 kg/ha increased weed density by 11–25%, however, the increased N gave the transplanted tomato competitive advantage and thus enhanced weed smothering. Pre-transplant application of butachlor (50% w/v) or probaben® (metolachlor 20% w/v+prometryn 20% w/v) each at 2.0 kg a.i/ha followed by supplementary hoe weeding at 6 weeks after transplanting (WAT) significantly reduced weed density by at least 15% and increased fruit yield of tomato by at least 32%, compared to use of the pre-transplant herbicides alone, across both years of study. The greatest tomato fruit yield of 12.2 t/ha was obtained with pre-transplant application of butachlor at 2.0 kg a.i/ha followed by supplementary hoe weeding at 6 WAT, averaged for both years. In general, this study suggests that increased application of N up to 90 kg/ha, and complementary weed control by pre-transplant herbicide and hoe weeding at 6 WAT would improve yield of tomato in the forestsavanna transition zone of Nigeria

    The steady-state structure of accretion discs in central magnetic fields

    Full text link
    We develop a new analytic solution for the steady-state structure of a thin accretion disc under the influence of a magnetic field that is anchored to the central star. The solution takes a form similar to that of Shakura and Sunyaev and tends to their solution as the magnetic moment of the star tends to zero. As well as the Kramer's law case, we obtain a solution for a general opacity. The effects of varying the mass transfer rate, spin period and magnetic field of the star as well as the opacity model applied to the disc are explored for a range of objects. The solution depends on the position of the magnetic truncation radius. We propose a new approach for the identification of the truncation radius and present an analytic expression for its position.Comment: 11 pages, 7 figures, accepted by MNRA
    • …
    corecore