187 research outputs found

    Localized collective excitations in doped graphene in strong magnetic fields

    Get PDF
    We consider collective excitations in graphene with filled Landau levels (LL’s) in the presence of an external potential due to a single charged donor D+ or acceptor A− impurity. We show that localized collective modes split off the magnetoplasmon continuum and, in addition, quasibound states are formed within the continuum. A study of the evolution of the strengths and energies of magneto-optical transitions is performed for integer filling factors ν=1,2,3,4 of the lowest LL. We predict impurity absorption peaks above as well as below the cyclotron resonance. We find that the single-particle electron-hole symmetry of graphene leads to a duality between the spectra of collective modes for the D+ and A−. The duality shows up as a set of the D+ and A− magnetoabsorption peaks having the same energies but active in different circular polarizations

    Double-exciton component of the cyclotron spin-flip mode in a quantum Hall ferromagnet

    Full text link
    We report on the calculation of the cyclotron spin-flip excitation (CSFE) in a spin-polarized quantum Hall system at unit filling. This mode has a double-exciton component which contributes to the CSFE correlation energy but can not be found by means of a mean field approach. The result is compared with available experimental data.Comment: 9 pages, 2 figure

    Charged two-dimensional magnetoexciton and two-mode squeezed vacuum states

    Full text link
    A novel unitary transformation of the Hamiltonian that allows one to partially separate the center-of-mass motion for charged electron-hole systems in a magnetic field is presented. The two-mode squeezed oscillator states that appear at the intermediate stage of the transformation are used for constructing a trial wave function of a two-dimensional (2D) charged magnetoexciton.Comment: 9 pages, 1 figur

    Charged mobile complexes in magnetic fields: A novel selection rule for magneto-optical transitions

    Full text link
    The implications of magnetic translations for internal optical transitions of charged mobile electron-hole (ee--hh) complexes and ions in a uniform magnetic field BB are discussed. It is shown that transitions of such complexes are governed by a novel exact selection rule. Internal intraband transitions of two-dimensional (2D) charged excitons X−X^- in strong magnetic fields are considered as an illustrative example.Comment: 4 pages, 2 figure

    Theory of combined exciton-cyclotron resonance in a two-dimensional electron gas: The strong magnetic field regime

    Full text link
    I develop a theory of combined exciton-cyclotron resonance (ExCR) in a low-density two-dimensional electron gas in high magnetic fields. In the presence of excess electrons an incident photon creates an exciton and simultaneously excites one electron to higher-lying Landau levels. I derive exact ExCR selection rules that follow from the existing dynamical symmetries, magnetic translations and rotations about the magnetic field axis. The nature of the final states in the ExCR is elucidated. The relation between ExCR and shake-up processes is discussed. The double-peak ExCR structure for transitions to the first electron Landau level is predicted.Comment: 5 pages, 3 figures, replaced with the published versio

    Trions in a periodic potential

    Full text link
    The group-theoretical classification of trion states is presented. It is based on considerations of products of irreducible representations of the 2D translation group. For a given BvK period N degeneracy of obtained states is N^2. Trions consist of two identical particles so the symmetrization of states with respect to particles transposition is considered. Completely antisymmetric states can be constructed by introducing antisymmetric spin functions. Two symmetry adapted bases are considered. The third possibility is postponed for the further investigations.Comment: revtex, 5 p., sub. to Physica
    • …
    corecore