1,479 research outputs found
Vibrating Superconducting Island in a Josephson Junction
We consider a combined nanomechanical-supercondcuting device that allows the
Cooper pair tunneling to interfere with the mechanical motion of the middle
superconducting island. Coupling of mechanical oscillations of a
superconducting island between two superconducting leads to the electronic
tunneling generate a supercurrent which is modulated by the oscillatory motion
of the island. This coupling produces alternating finite and vanishing
supercurrent as function of the superconducting phases. Current peaks are
sensitive to the superconducting phase shifts relative to each other. The
proposed device may be used to study the nanoelectromechanical coupling in case
of superconducting electronics.Comment: 4 pages, 3 figures, to appear in Phys. Rev. Let
Conductance of a molecular junction mediated by unconventional metal-induced gap states
The conductance of a molecular junction is commonly determined by either
charge-transfer-doping, where alignment of the Fermi energy to the molecular
levels is achieved, or tunnelling through the tails of molecular resonances
within the highest-occupied and lowest-unoccupied molecular-orbital gap.
Here, we present an alternative mechanism where electron transport is
dominated by electrode surface states. They give rise to metallization of the
molecular bridge and additional, pronounced conductance resonances allowing for
substantial tailoring of its electronic properties via, e.g. a gate voltage.
This is demonstrated in a field-effect geometry of a fullerene-bridge between
two metallic carbon nanotubes.Comment: 7 pages, 5 figures included; to be published in Europhys. Let
Electrical Conductance of Molecular Wires
Molecular wires (MW) are the fundamental building blocks for molecular
electronic devices. They consist of a molecular unit connected to two continuum
reservoirs of electrons (usually metallic leads). We rely on Landauer theory as
the basis for studying the conductance properties of MW systems. This relates
the lead to lead current to the transmission probability for an electron to
scatter through the molecule. Two different methods have been developed for the
study of this scattering. One is based on a solution of the Lippmann-Schwinger
equation and the other solves for the {\bf t} matrix using Schroedinger's
equation. We use our methodology to study two problems of current interest. The
first MW system consists of 1,4 benzene-dithiolate (BDT) bonded to two gold
nanocontacts. Our calculations show that the conductance is sensitive to the
chemical bonding between the molecule and the leads. The second system we study
highlights the interesting phenomenon of antiresonances in MW. We derive an
analytic formula predicting at what energies antiresonances should occur in the
transmission spectra of MW. A numerical calculation for a MW consisting of
filter molecules attached to an active molecule shows the existence of an
antiresonance at the energy predicted by our formula.Comment: 14 pages, 5 figure
Charging induced asymmetry in molecular conductors
We investigate the origin of asymmetry in various measured current-voltage
(I-V) characteristics of molecules with no inherent spatial asymmetry, with
particular focus on a recent break junction measurement. We argue that such
asymmetry arises due to unequal coupling with the contacts and a consequent
difference in charging effects, which can only be captured in a self-consistent
model for molecular conduction. The direction of the asymmetry depends on the
sign of the majority carriers in the molecule. For conduction through highest
occupied molecular orbitals (i.e. HOMO or p-type conduction), the current is
smaller for positive voltage on the stronger contact, while for conduction
through lowest unoccupied molecular orbitals (i.e. LUMO or n-type conduction),
the sense of the asymmetry is reversed. Within an extended Huckel description
of the molecular chemistry and the contact microstructure (with two adjustable
parameters, the position of the Fermi energy and the sulphur-gold bond length),
an appropriate description of Poisson's equation, and a self-consistently
coupled non-equilibrium Green's function (NEGF) description of transport, we
achieve good agreement between theoretical and experimental I-V
characteristics, both in shape as well as overall magnitude.Comment: length of the paper has been extended (4 pages to 6 pages), two new
figures have been added (3 figures to 5 figures), has been accepted for PR
A mesoscopic ring as a XNOR gate: An exact result
We describe XNOR gate response in a mesoscopic ring threaded by a magnetic
flux . The ring is attached symmetrically to two semi-infinite
one-dimensional metallic electrodes and two gate voltages, viz, and
, are applied in one arm of the ring which are treated as the inputs of
the XNOR gate. The calculations are based on the tight-binding model and the
Green's function method, which numerically compute the conductance-energy and
current-voltage characteristics as functions of the ring-to-electrode coupling
strength, magnetic flux and gate voltages. Our theoretical study shows that,
for a particular value of () (, the elementary
flux-quantum), a high output current (1) (in the logical sense) appears if both
the two inputs to the gate are the same, while if one but not both inputs are
high (1), a low output current (0) results. It clearly exhibits the XNOR gate
behavior and this aspect may be utilized in designing an electronic logic gate.Comment: 8 pages, 5 figure
Tuning the conductance of molecular junctions: transparent versus tunneling regimes
We present a theoretical study of the transport characteristics of molecular
junctions, where first-row diatomic molecules are attached to (001) gold and
platinum electrodes. We find that the conductance of all of these junctions is
of the order of the conductance quantum unit , spelling out that they
belong to the transparent regime. We further find that the transmission
coefficients show wide plateaus as a function of the energy, instead of the
usual sharp resonances that signal the molecular levels in the tunneling
regime. We use Caroli's model to show that this is a rather generic property of
the transparent regime of a junction, which is driven by a strong effective
coupling between the delocalized molecular levels and the conduction channels
at the electrodes. We analyse the transmission coefficients and chemical
bonding of gold/Benzene and gold/Benzene-dithiolate (BDT) junctions to
understand why the later show large resistances, while the former are highly
conductive.Comment: 9 pages, 7 figure
Antiresonances in Molecular Wires
We present analytic and numerical studies based on Landauer theory of
conductance antiresonances of molecular wires. Our analytic treatment is a
solution of the Lippmann-Schwinger equation for the wire that includes the
effects of the non-orthogonality of the atomic orbitals on different atoms
exactly. The problem of non-orthogonality is treated by solving the transport
problem in a new Hilbert space which is spanned by an orthogonal basis. An
expression is derived for the energies at which antiresonances should occur for
a molecular wire connected to a pair of single-channel 1D leads. From this
expression we identify two distinct mechanisms that give rise to antiresonances
under different circumstances. The exact treatment of non-orthogonality in the
theory is found to be necessary to obtain reliable results. Our numerical
simulations extend this work to multichannel leads and to molecular wires
connected to 3D metallic nanocontacts. They demonstrate that our analytic
results also provide a good description of these more complicated systems
provided that certain well-defined conditions are met. These calculations
suggest that antiresonances should be experimentally observable in the
differential conductance of molecular wires of certain types.Comment: 22 pages, 5 figure
Orbital Interaction Mechanisms of Conductance Enhancement and Rectification by Dithiocarboxylate Anchoring Group
We study computationally the electron transport properties of
dithiocarboxylate terminated molecular junctions. Transport properties are
computed self-consistently within density functional theory and nonequilibrium
Green's functions formalism. A microscopic origin of the experimentally
observed current amplification by dithiocarboxylate anchoring groups is
established. For the 4,4'-biphenyl bis(dithiocarboxylate) junction, we find
that the interaction of the lowest unoccupied molecular orbital (LUMO) of the
dithiocarboxylate anchoring group with LUMO and highest occupied molecular
orbital (HOMO) of the biphenyl part results in bonding and antibonding
resonances in the transmission spectrum in the vicinity of the electrode Fermi
energy. A new microscopic mechanism of rectification is predicted based on the
electronic structure of asymmetrical anchoring groups. We show that the peaks
in the transmission spectra of 4'-thiolato-biphenyl-4-dithiocarboxylate
junction respond differently to the applied voltage. Depending upon the origin
of a transmission resonance in the orbital interaction picture, its energy can
be shifted along with the chemical potential of the electrode to which the
molecule is more strongly or more weakly coupled
Bi-stable tunneling current through a molecular quantum dot
An exact solution is presented for tunneling through a negative-U d-fold
degenerate molecular quantum dot weakly coupled to electrical leads. The tunnel
current exhibits hysteresis if the level degeneracy of the negative-U dot is
larger than two (d>2). Switching occurs in the voltage range V1 < V < V2 as a
result of attractive electron correlations in the molecule, which open up a new
conducting channel when the voltage is above the threshold bias voltage V2.
Once this current has been established, the extra channel remains open as the
voltage is reduced down to the lower threshold voltage V1. Possible
realizations of the bi-stable molecular quantum dots are fullerenes, especially
C60, and mixed-valence compounds.Comment: 5 pages, 1 figure. (v2) Figure updated to compare the current
hysteresis for degeneracies d=4 and d>>1 of the level in the dot, minor
corrections in the text. To appear in Phys. Rev.
- …