208 research outputs found

    Discrete space-time geometry and skeleton conception of particle dynamics

    Full text link
    It is shown that properties of a discrete space-time geometry distinguish from properties of the Riemannian space-time geometry. The discrete geometry is a physical geometry, which is described completely by the world function. The discrete geometry is nonaxiomatizable and multivariant. The equivalence relation is intransitive in the discrete geometry. The particles are described by world chains (broken lines with finite length of links), because in the discrete space-time geometry there are no infinitesimal lengths. Motion of particles is stochastic, and statistical description of them leads to the Schr\"{o}dinger equation, if the elementary length of the discrete geometry depends on the quantum constant in a proper way.Comment: 22 pages, 0 figure

    Hydrodynamic equations for incompressible inviscid fluid in terms of generalized stream function

    Full text link
    Hydrodynamic equations for ideal incompressible fluid are written in terms of generalized stream function. Two-dimensional version of these equations is transformed to the form of one dynamic equation for the stream function. This equation contains arbitrary function which is determined by inflow conditions given on the boundary. To determine unique solution, velocity and vorticity (but not only velocity itself) must be given on the boundary. This unexpected circumstance may be interpreted in the sense that the fluid has more degrees of freedom, than it was believed. Besides, the vorticity is less observable quantity as compared with the velocity. It is shown that the Clebsch potentials are used essentially at the description of vortical flow.Comment: 31 pages, 0 figures, The paper is reduced. Consideration of nonstationary flow has been remove
    • …
    corecore