566 research outputs found

    Simulation of Plasticity in Nanocrystalline Silicon

    Get PDF
    Molecular dynamics investigation of plasticity in a model nanocrystalline silicon system demonstrates that inelastic deformation localizes in intergranular regions. The carriers of plasticity in these regions are atomic environments that can be described as high-density liquid-like amorphous silicon. During fully developed flow, plasticity is confined to system-spanning intergranular zones of easy flow. As an active flow zone rotates out of the plane of maximum resolved shear stress during deformation to large strain, new zones of easy flow are formed. Compatibility of the microstructure is accommodated by processes such as grain rotation and formation of new grains. Nano-scale voids or cracks may form if there emerge stress concentrations that cannot be relaxed by a mechanism that simultaneously preserves microstructural compatibility

    Dynamics of Viscoplastic Deformation in Amorphous Solids

    Full text link
    We propose a dynamical theory of low-temperature shear deformation in amorphous solids. Our analysis is based on molecular-dynamics simulations of a two-dimensional, two-component noncrystalline system. These numerical simulations reveal behavior typical of metallic glasses and other viscoplastic materials, specifically, reversible elastic deformation at small applied stresses, irreversible plastic deformation at larger stresses, a stress threshold above which unbounded plastic flow occurs, and a strong dependence of the state of the system on the history of past deformations. Microscopic observations suggest that a dynamically complete description of the macroscopic state of this deforming body requires specifying, in addition to stress and strain, certain average features of a population of two-state shear transformation zones. Our introduction of these new state variables into the constitutive equations for this system is an extension of earlier models of creep in metallic glasses. In the treatment presented here, we specialize to temperatures far below the glass transition, and postulate that irreversible motions are governed by local entropic fluctuations in the volumes of the transformation zones. In most respects, our theory is in good quantitative agreement with the rich variety of phenomena seen in the simulations.Comment: 16 pages, 9 figure

    Shear-Induced Stress Relaxation in a Two-Dimensional Wet Foam

    Full text link
    We report on experimental measurements of the flow behavior of a wet, two-dimensional foam under conditions of slow, steady shear. The initial response of the foam is elastic. Above the yield strain, the foam begins to flow. The flow consists of irregular intervals of elastic stretch followed by sudden reductions of the stress, i.e. stress drops. We report on the distribution of the stress drops as a function of the applied shear rate. We also comment on our results in the context of various two-dimensional models of foams

    Discovery of 6.035GHz Hydroxyl Maser Flares in IRAS18566+0408

    Full text link
    We report the discovery of 6.035GHz hydroxyl (OH) maser flares toward the massive star forming region IRAS18566+0408 (G37.55+0.20), which is the only region known to show periodic formaldehyde (4.8 GHz H2CO) and methanol (6.7 GHz CH3OH) maser flares. The observations were conducted between October 2008 and January 2010 with the 305m Arecibo Telescope in Puerto Rico. We detected two flare events, one in March 2009, and one in September to November 2009. The OH maser flares are not simultaneous with the H2CO flares, but may be correlated with CH3OH flares from a component at corresponding velocities. A possible correlated variability of OH and CH3OH masers in IRAS18566+0408 is consistent with a common excitation mechanism (IR pumping) as predicted by theory.Comment: Accepted for publication in the Astrophysical Journa

    Micro-plasticity and intermittent dislocation activity in a simplified micro structural model

    Full text link
    Here we present a model to study the micro-plastic regime of a stress-strain curve. In this model an explicit dislocation population represents the mobile dislocation content and an internal shear-stress field represents a mean-field description of the immobile dislocation content. The mobile dislocations are constrained to a simple dipolar mat geometry and modelled via a dislocation dynamics algorithm, whilst the shear-stress field is chosen to be a sinusoidal function of distance along the mat direction. The latter, defined by a periodic length and a shear-stress amplitude, represents a pre-existing micro-structure. These model parameters, along with the mobile dislocation density, are found to admit a diversity of micro-plastic behaviour involving intermittent plasticity in the form of a scale-free avalanche phenomenon, with an exponent for the strain burst magnitude distribution similar to those seen in experiment and more complex dislocation dynamics simulations.Comment: 30 pages, 12 figures, to appear in "Modelling and Simulation in Materials Science and Engineering

    Sheared Solid Materials

    Full text link
    We present a time-dependent Ginzburg-Landau model of nonlinear elasticity in solid materials. We assume that the elastic energy density is a periodic function of the shear and tetragonal strains owing to the underlying lattice structure. With this new ingredient, solving the equations yields formation of dislocation dipoles or slips. In plastic flow high-density dislocations emerge at large strains to accumulate and grow into shear bands where the strains are localized. In addition to the elastic displacement, we also introduce the local free volume {\it m}. For very small mm the defect structures are metastable and long-lived where the dislocations are pinned by the Peierls potential barrier. However, if the shear modulus decreases with increasing {\it m}, accumulation of {\it m} around dislocation cores eventually breaks the Peierls potential leading to slow relaxations in the stress and the free energy (aging). As another application of our scheme, we also study dislocation formation in two-phase alloys (coherency loss) under shear strains, where dislocations glide preferentially in the softer regions and are trapped at the interfaces.Comment: 16pages, 11figure

    Full-Polarization Observations of OH Masers in Massive Star-Forming Regions: I. Data

    Full text link
    We present full-polarization VLBA maps of the ground-state, main-line, 2 Pi 3/2, J = 3/2 OH masers in 18 Galactic massive star-forming regions. This is the first large polarization survey of interstellar hydroxyl masers at VLBI resolution. A total of 184 Zeeman pairs are identified, and the corresponding magnetic field strengths are indicated. We also present spectra of the NH3 emission or absorption in these star-forming regions. Analysis of these data will be presented in a companion paper.Comment: 111 pages, including 42 figures and 21 tables, to appear in ApJ
    • 

    corecore