276 research outputs found
Particle Dynamics in Damped Nonlinear Quadrupole Ion Traps
We examine the motions of particles in quadrupole ion traps as a function of
damping and trapping forces, including cases where nonlinear damping or
nonlinearities in the electric field geometry play significant roles. In the
absence of nonlinearities, particles are either damped to the trap center or
ejected, while their addition brings about a rich spectrum of stable closed
particle trajectories. In three-dimensional (3D) quadrupole traps, the extended
orbits are typically confined to the trap axis, and for this case we present a
1D analysis of the relevant equation of motion. We follow this with an analysis
of 2D quadrupole traps that frequently show diamond-shaped closed orbits. For
both the 1D and 2D cases we present experimental observations of the calculated
trajectories in microparticle ion traps. We also report the discovery of a new
collective behavior in damped 2D microparticle ion traps, where particles
spontaneously assemble into a remarkable knot of overlapping, corotating
diamond orbits, self-stabilized by air currents arising from the particle
motion
Differential cross sections for muonic atom scattering from hydrogenic molecules
The differential cross sections for low-energy muonic hydrogen atom
scattering from hydrogenic molecules are directly expressed by the
corresponding amplitudes for muonic atom scattering from hydrogen-isotope
nuclei. The energy and angular dependence of these three-body amplitudes is
thus taken naturally into account in scattering from molecules, without
involving any pseudopotentials. Effects of the internal motion of nuclei inside
the target molecules are included for every initial rotational-vibrational
state. These effects are very significant as the considered three-body
amplitudes often vary strongly within the energy interval eV.
The differential cross sections, calculated using the presented method, have
been successfully used for planning and interpreting many experiments in
low-energy muon physics. Studies of nuclear capture in and the
measurement of the Lamb shift in atoms created in H gaseous targets
are recent examples.Comment: 21 pages, 13 figures, submitted to Phys. Rev.
- …