2,989 research outputs found
Recommended from our members
Privacy-preserving model learning on a blockchain network-of-networks.
ObjectiveTo facilitate clinical/genomic/biomedical research, constructing generalizable predictive models using cross-institutional methods while protecting privacy is imperative. However, state-of-the-art methods assume a "flattened" topology, while real-world research networks may consist of "network-of-networks" which can imply practical issues including training on small data for rare diseases/conditions, prioritizing locally trained models, and maintaining models for each level of the hierarchy. In this study, we focus on developing a hierarchical approach to inherit the benefits of the privacy-preserving methods, retain the advantages of adopting blockchain, and address practical concerns on a research network-of-networks.Materials and methodsWe propose a framework to combine level-wise model learning, blockchain-based model dissemination, and a novel hierarchical consensus algorithm for model ensemble. We developed an example implementation HierarchicalChain (hierarchical privacy-preserving modeling on blockchain), evaluated it on 3 healthcare/genomic datasets, as well as compared its predictive correctness, learning iteration, and execution time with a state-of-the-art method designed for flattened network topology.ResultsHierarchicalChain improves the predictive correctness for small training datasets and provides comparable correctness results with the competing method with higher learning iteration and similar per-iteration execution time, inherits the benefits of the privacy-preserving learning and advantages of blockchain technology, and immutable records models for each level.DiscussionHierarchicalChain is independent of the core privacy-preserving learning method, as well as of the underlying blockchain platform. Further studies are warranted for various types of network topology, complex data, and privacy concerns.ConclusionWe demonstrated the potential of utilizing the information from the hierarchical network-of-networks topology to improve prediction
Tunable Fano-Kondo resonance in side-coupled double quantum dot system
We study the interference between the Fano and Kondo effects in a
side-coupled double-quantum- dot system where one of the quantum dots couples
to conduction electron bath while the other dot only side-couples to the first
dot via antiferromagnetic (AF) spin exchange coupling. We apply both the
perturbative renormalization group (RG) and numerical renormalization group
(NRG) approaches to study the effect of AF coupling on the Fano lineshape in
the conduction leads. With particle-hole symmetry, the AF exchange coupling
competes with the Kondo effect and leads to a local spin-singlet ground state
for arbitrary small coupling, so called "two-stage Kondo effect". As a result,
via NRG we find the spectral properties of the Fano lineshape in the tunneling
density of states (TDOS) of conduction electron leads shows double dip-peak
features at the energy scale around the Kondo temperature and the one much
below it, corresponding to the two-stage Kondo effect; it also shows an
universal scaling behavior at very low energies. We find the qualitative
agreement between the NRG and the perturbative RG approach. Relevance of our
work to the experiments is discussed.Comment: 7 pages, 7 figure
Decoherence and Recoherence in Model Quantum Systems
We discuss the various manifestations of quantum decoherence in the forms of
dephasing, entanglement with the environment, and revelation of "which-path"
information. As a specific example, we consider an electron interference
experiment. The coupling of the coherent electrons to the quantized
electromagnetic field illustrates all of these versions of decoherence. This
decoherence has two equivalent interpretations, in terms of photon emission or
in terms of Aharonov-Bohm phase fluctuations. We consider the case when the
coherent electrons are coupled to photons in a squeezed vacuum state. The
time-averaged result is increased decoherence. However, if only electrons which
are emitted during selected periods are counted, the decoherence can be
suppressed below the level for the photon vacuum. This is the phenomenon of
recoherence. This effect is closely related to the quantum violations of the
weak energy condition, and is restricted by similar inequalities. We give some
estimates of the magnitude of the recoherence effect and discuss prospects for
observing it in an electron interferometry experiment.Comment: 8 pages, 3 figures, talk presented at the 7th Friedmann Seminar, Joao
Pessoa, Brazil, July 200
Impact of Teat Order on Feed Consumption in Swine from Birth to Nursery
A relationship between teat order and feed consumption has been assumed in pigs, but no study has looked at this exact relationship. Pigs were observed shortly after birth to be in either a cranial, middle, or caudal teat positon. Growth performance data and active and total plasma ghrelin concentrations were analyzed at birth, weaning, and at the end of the nursery stage of production to see if a relationship with teat order was present. Overall, no effect of teat order was found on average daily gain, average daily feed intake, gain-to-feed ratio, or body weight among pigs from each section of the udder. Differences did occur during certain stages of nursery, which can be of economic importance to producers. No difference was seen in active or total ghrelin levels or the active-to-total ghrelin ratio in relation to teat order, although there were differences in active and total ghrelin concentrations among the sampling days. Further research should be carried out to investigate what factors would contribute to this data contradicting previous inferences about the relationship of teat order and feed consumption in pigs
Spin-orbit torques acting upon a perpendicularly-magnetized Py layer
We show that Py, a commonly-used soft ferromagnetic material with weak
anisotropy, can become perpendicularly-magnetized while depositing on Ta buffer
layer with Hf or Zr insertion layers (ILs) and MgO capping layer. By using two
different approaches, namely harmonic voltage measurement and hysteresis loop
shift measurement, the dampinglike spin-orbit torque (DL-SOT) efficiencies from
Ta/IL/Py/IL/MgO magnetic heterostructures with perpendicular magnetic
anisotropy are characterized. We find that though Ta has a significant spin
Hall effect, the DL-SOT efficiencies are small in systems with the Ta/Py
interface compared to that obtained from the control sample with the
traditional Ta/CoFeB interface. Our results indicate that the spin transparency
for the Ta/Py interface is much less than that for the Ta/CoFeB interface,
which might be related to the variation of spin mixing conductance for
different interfaces
- …