175 research outputs found

    Shocks in sand flowing in a silo

    Full text link
    We study the formation of shocks on the surface of a granular material draining through an orifice at the bottom of a quasi-two dimensional silo. At high flow rates, the surface is observed to deviate strongly from a smooth linear inclined profile giving way to a sharp discontinuity in the height of the surface near the bottom of the incline, the typical response of a choking flow such as encountered in a hydraulic jump in a Newtonian fluid like water. We present experimental results that characterize the conditions for the existence of such a jump, describe its structure and give an explanation for its occurrence.Comment: 5 pages, 7 figure

    Angle of repose and segregation in cohesive granular matter

    Full text link
    We study the effect of fluids on the angle of repose and the segregation of granular matter poured into a silo. The experiments are conducted in two regimes where: (i) the volume fraction of the fluid is small and it forms liquid bridges between particles, and (ii) the particles are completely immersed in the fluid. The data is obtained by imaging the pile formed inside a quasi-two dimensional silo through the transparent glass side walls. In the first series of experiments, the angle of repose is observed to increase sharply with the volume fraction of the fluid and then saturates at a value that depends on the size of the particles. We systematically study the effect of viscosity by using water-glycerol mixtures to vary it over at least three orders of magnitude while keeping the surface tension almost constant. Besides surface tension, the viscosity of the fluid is observed to have an effect on the angle of repose and the extent of segregation. In case of bidisperse particles, segregation is observed to decrease and finally saturate depending on the size ratio of the particles and the viscosity of the fluid. The sharp initial change and the subsequent saturation in the extent of segregation and angle of repose occurs over similar volume fraction of the fluid. In the second series of experiments, particles are poured into a container filled with a fluid. Although the angle of repose is observed to be unchanged, segregation is observed to decrease with an increase in the viscosity of the fluid.Comment: 9 pages, 12 figure

    Maximum Angle of Stability of a Wet Granular Pile

    Full text link
    Anyone who has built a sandcastle recognizes that the addition of liquid to granular materials increases their stability. However, measurements of this increased stability often conflict with theory and with each other [1-7]. A friction-based Mohr-Coulomb model has been developed [3,8]. However, it distinguishes between granular friction and inter-particle friction, and uses the former without providing a physical mechanism. Albert, {\em et al.} [2] analyzed the geometric stability of grains on a pile's surface. The frictionless model for dry particles is in excellent agreement with experiment. But, their model for wet grains overestimates stability and predicts no dependence on system size. Using the frictionless model and performing stability analysis within the pile, we reproduce the dependence of the stability angle on system size, particle size, and surface tension observed in our experiments. Additionally, we account for past discrepancies in experimental reports by showing that sidewalls can significantly increase the stability of granular material.Comment: 4 pages, 4 figure

    Nontrivial Velocity Distributions in Inelastic Gases

    Full text link
    We study freely evolving and forced inelastic gases using the Boltzmann equation. We consider uniform collision rates and obtain analytical results valid for arbitrary spatial dimension d and arbitrary dissipation coefficient epsilon. In the freely evolving case, we find that the velocity distribution decays algebraically, P(v,t) ~ v^{-sigma} for sufficiently large velocities. We derive the exponent sigma(d,epsilon), which exhibits nontrivial dependence on both d and epsilon, exactly. In the forced case, the velocity distribution approaches a steady-state with a Gaussian large velocity tail.Comment: 4 pages, 1 figur

    Power-law velocity distributions in granular gases

    Full text link
    We report a general class of steady and transient states of granular gases. We find that the kinetic theory of inelastic gases admits stationary solutions with a power-law velocity distribution, f(v) ~ v^(-sigma). The exponent sigma is found analytically and depends on the spatial dimension, the degree of inelasticity, and the homogeneity degree of the collision rate. Driven steady-states, with the same power-law tail and a cut-off can be maintained by injecting energy at a large velocity scale, which then cascades to smaller velocities where it is dissipated. Associated with these steady-states are freely cooling time-dependent states for which the cut-off decreases and the velocity distribution is self-similar.Comment: 11 pages, 9 figure

    Clustering transitions in vibro-fluidized magnetized granular materials

    Full text link
    We study the effects of long range interactions on the phases observed in cohesive granular materials. At high vibration amplitudes, a gas of magnetized particles is observed with velocity distributions similar to non-magnetized particles. Below a transition temperature compact clusters are observed to form and coexist with single particles. The cluster growth rate is consistent with a classical nucleation process. However, the temperature of the particles in the clusters is significantly lower than the surrounding gas, indicating a breakdown of equipartition. If the system is quenched to low temperatures, a meta-stable network of connected chains self-assemble due to the anisotropic nature of magnetic interactions between particles.Comment: 4 pages, 5 figure

    Avalanche Dynamics in Wet Granular Materials

    Full text link
    We have studied the dynamics of avalanching wet granular media in a rotating drum apparatus. Quantitative measurements of the flow velocity and the granular flux during avalanches allow us to characterize novel avalanche types unique to wet media. We also explore the details of viscoplastic flow (observed at the highest liquid contents) in which there are lasting contacts during flow, leading to coherence across the entire sample. This coherence leads to a velocity independent flow depth at high rotation rates and novel robust pattern formation in the granular surface.Comment: 5 pages, 3 figures in color, REVTeX4, for smaller pdfs see http://angel.elte.hu/~tegzes/condmat.htm

    Size Segregation of Granular Matter in Silo Discharges

    Full text link
    We present an experimental study of segregation of granular matter in a quasi-two dimensional silo emptying out of an orifice. Size separation is observed when multi-sized particles are used with the larger particles found in the center of the silo in the region of fastest flow. We use imaging to study the flow inside the silo and quantitatively measure the concentration profiles of bi-disperse beads as a function of position and time. The angle of the surface is given by the angle of repose of the particles, and the flow occurs in a few layers only near the top of this inclined surface. The flowing region becomes deeper near the center of the silo and is confined to a parabolic region centered at the orifice which is approximately described by the kinematic model. The experimental evidence suggests that the segregation occurs on the surface and not in the flow deep inside the silo where velocity gradients also are present. We report the time development of the concentrations of the bi-disperse particles as a function of size ratios, flow rate, and the ratio of initial mixture. The qualitative aspects of the observed phenomena may be explained by a void filling model of segregation.Comment: 6 pages, 10 figures (gif format), postscript version at http://physics.clarku.edu/~akudrolli/nls.htm

    A Dedicated Promoter Drives Constitutive Expression of the Cell-Autonomous Immune Resistance GTPase, Irga6 (IIGP1) in Mouse Liver

    Get PDF
    Background: In general, immune effector molecules are induced by infection. Methodology and Principal Findings: However, strong constitutive expression of the cell-autonomous resistance GTPase, Irga6 (IIGP1), was found in mouse liver, contrasting with previous evidence that expression of this protein is exclusively dependent on induction by IFNc. Constitutive and IFNc-inducible expression of Irga6 in the liver were shown to be dependent on transcription initiated from two independent untranslated 59 exons, which splice alternatively into the long exon encoding the full-length protein sequence. Irga6 is expressed constitutively in freshly isolated hepatocytes and is competent in these cells to accumulate on the parasitophorous vacuole membrane of infecting Toxoplasma gondii tachyzoites. Conclusions and Significance: The role of constitutive hepatocyte expression of Irga6 in resistance to parasites invading from the gut via the hepatic portal system is discussed
    • …
    corecore