73 research outputs found

    From gyroscopic to thermal motion: a crossover in the dynamics of molecular superrotors

    Full text link
    Localized heating of a gas by intense laser pulses leads to interesting acoustic, hydrodynamic and optical effects with numerous applications in science and technology, including controlled wave guiding and remote atmosphere sensing. Rotational excitation of molecules can serve as the energy source for raising the gas temperature. Here, we study the dynamics of energy transfer from the molecular rotation to heat. By optically imaging a cloud of molecular superrotors, created with an optical centrifuge, we experimentally identify two separate and qualitatively different stages of its evolution. The first non-equilibrium "gyroscopic" stage is characterized by the modified optical properties of the centrifuged gas - its refractive index and optical birefringence, owing to the ultrafast directional molecular rotation, which survives tens of collisions. The loss of rotational directionality is found to overlap with the release of rotational energy to heat, which triggers the second stage of thermal expansion. The crossover between anisotropic rotational and isotropic thermal regimes is in agreement with recent theoretical predictions and our hydrodynamic calculations

    Calculation of The Lifetimes of Thin Stripper Targets Under Bombardment of Intense Pulsed Ions

    Full text link
    The problems of stripper target behavior in the nonstationary intense particle beams are considered. The historical sketch of studying of radiation damage failure of carbon targets under ion bombardment is presented. The simple model of evaporation of a target by an intensive pulsing beam is supposed. Stripper foils lifetimes in the nonstationary intense particle can be described by two failure mechanisms: radiation damage accumulation and evaporation of target. At the maximal temperatures less than 2500K the radiation damage are dominated; at temperatures above 2500K the mechanism of evaporation of a foil prevails. The proposed approach has been applied to the discription of behaviour of stripper foils in the BNL linac and SNS conditions.Comment: 12 pages, 5 figure

    Normal state resistivity of Ba1x_{1-x}Kx_xFe2_2As2_2: evidence for multiband strong-coupling behavior

    Get PDF
    We present theoretical analysis of the normal state resistivity in multiband superconductors in the framework of Eliashberg theory. The results are compared with measurements of the temperature dependence of normal state resistivity of high-purity Ba0.68_{0.68}K0.32_{0.32}Fe2_{2}As2_{2} single crystals with the highest reported transition temperature TcT_c = 38.5 K. The experimental data demonstrate strong deviations from the Bloch-Gr\"{u}neisen behavior, namely the tendency to saturation of the resistivity at high temperatures. The observed behavior of the resistivity is explained within the two band scenario when the first band is strongly coupled and relatively clean, while the second band is weakly coupled and is characterized by much stronger impurity scattering.Comment: 4 pages, 3 figures, to be published in JETP Letters Vol.94, N

    Wind turbine simulation: structural mechanics, fsi and computational steering

    Get PDF
    A fluid-structure interaction (FSI) validation study of Micon 65/13M wind turbine with Sandia CX-100 composite blades is presented. KirchhoffLove shell theory is used for blade structures, while the aerodynamics formulation is performed using a moving-domain finite-element-based ALE-VMS technique. The structural mechanics formulation is validated through the eigenfrequency analysis of the CX-100 blade. For coupling between two domains a nonmatching discretization of the fluid-structure interface is adopted. This adds flexibility and relaxes the requirements placed on geometry modeling and meshing tools employed. The simulations are done at realistic wind conditions and rotor speeds. The rotor-tower interaction that influences the aerodynamic torque is captured. The computed aerodynamic torque generated by the Micon 65/13M wind turbine compares well with that obtained from on-land field tests. We conclude by illustrating the application of the Dynamic Data-Driven Applications System (DDDAS) to investigate the fiber waviness defects embedded in the CX-100 wind turbine blade
    corecore