357 research outputs found
The Maximum Entropy Production Principle: Its Theoretical Foundations and Applications to the Earth System
The Maximum Entropy Production (MEP) principle has been remarkably successful in producing accurate predictions for non-equilibrium states. We argue that this is because the MEP principle is an effective inference procedure that produces the best predictions from the available information. Since all Earth system processes are subject to the conservation of energy, mass and momentum, we argue that in practical terms the MEP principle should be applied to Earth system processes in terms of the already established framework of non-equilibrium thermodynamics, with the assumption of local thermodynamic equilibrium at the appropriate scales
Working at the limit: A review of thermodynamics and optimality of the Earth system
Optimality concepts related to energy and entropy have long been proposed to govern Earth system processes, for instance in the form of propositions that certain processes maximize or minimize entropy production. These concepts, however, remain quite obscure, seem contradictory to each other, and have so far been mostly disregarded. This review aims to clarify the role of thermodynamics and optimality in Earth system science by showing that they play a central role in how, and how much, work can be derived from solar forcing and that this imposes a major constraint on the dynamics of dissipative structures of the Earth system. This is, however, not as simple as it may sound. It requires a consistent formulation of Earth system processes in thermodynamic terms, including their linkages and interactions. Thermodynamics then constrains the ability of the Earth system to derive work and generate free energy from solar radiative forcing, which limits the ability to maintain motion, mass transport, geochemical cycling, and biotic activity. It thus limits directly the generation of atmospheric motion and other processes indirectly through their need for transport. I demonstrate the application of this thermodynamic Earth system view by deriving first-order estimates associated with atmospheric motion, hydrologic cycling, and terrestrial productivity that agree very well with observations. This supports the notion that the emergent simplicity and predictability inherent in observed climatological variations can be attributed to these processes working as hard as they can, reflecting thermodynamic limits directly or indirectly. I discuss how this thermodynamic interpretation is consistent with established theoretical concepts in the respective disciplines, interpret other optimality concepts in light of this thermodynamic Earth system view, and describe its utility for Earth system science.</p
Assessing the role of deep rooted vegetation in the climate system with model simulations: mechanism, comparison to observations and implications for Amazonian deforestation
Deep rooted vegetation (of up to 68 m) has been found in many parts of the tropics. However, models of the general atmospheric circulation (GCMs) typically use rooting depths of less than 2 m in their land surface parametrizations. How does the incorporation of deep roots into such a model affect the simulated climate? We assess this question by using a GCM and find that deeper roots lead to a pronounced seasonal response. During the dry season, evapotranspiration and the associated latent heat flux are considerably increased over large regions leading to a cooling of up to 8 K. The enhanced atmospheric moisture is transported towards the main convection areas in the inner tropical convergence zone where it supplies more energy to convection thus intensifying the tropical circulation patterns. Comparison to different kinds of data reveals that the simulation with deeper roots is much closer to observations. The inclusion of deep roots also leads to a general increased climatic sensitivity to rooting depth change. We investigate this aspect in the context of the climatic effects of large-scale deforestation in Amazonia. Most of the regional and remote changes can be attributed to the removal of deep roots. We conclude that deep rooted vegetation is an important part of the tropical climate system. Without the consideration of deep roots, the present-day surface climate cannot adequately be simulated
The role of tectonic uplift, climate, and vegetation in the long-term terrestrial phosphorous cycle
Phosphorus (P) is a crucial element for life and therefore for maintaining ecosystem productivity. Its local availability to the terrestrial biosphere results from the interaction between climate, tectonic uplift, atmospheric transport, and biotic cycling. Here we present a mathematical model that describes the terrestrial P-cycle in a simple but comprehensive way. The resulting dynamical system can be solved analytically for steady-state conditions, allowing us to test the sensitivity of the P-availability to the key parameters and processes. Given constant inputs, we find that humid ecosystems exhibit lower P availability due to higher runoff and losses, and that tectonic uplift is a fundamental constraint. In particular, we find that in humid ecosystems the biotic cycling seem essential to maintain long-term P-availability. The time-dependent P dynamics for the Franz Josef and Hawaii chronosequences show how tectonic uplift is an important constraint on ecosystem productivity, while hydroclimatic conditions control the P-losses and speed towards steady-state. The model also helps describe how, with limited uplift and atmospheric input, as in the case of the Amazon Basin, ecosystems must rely on mechanisms that enhance P-availability and retention. Our novel model has a limited number of parameters and can be easily integrated into global climate models to provide a representation of the response of the terrestrial biosphere to global change
Estimating maximum global land surface wind power extractability and associated climatic consequences
The availability of wind power for renewable energy extraction is ultimately limited by how much kinetic energy is generated by natural processes within the Earth system and by fundamental limits of how much of the wind power can be extracted. Here we use these considerations to provide a maximum estimate of wind power availability over land. We use several different methods. First, we outline the processes associated with wind power generation and extraction with a simple power transfer hierarchy based on the assumption that available wind power will not geographically vary with increased extraction for an estimate of 68TW. Second, we set up a simple momentum balance model to estimate maximum extractability which we then apply to reanalysis climate data, yielding an estimate of 21TW. Third, we perform general circulation model simulations in which we extract different amounts of momentum from the atmospheric boundary layer to obtain a maximum estimate of how much power can be extracted, yielding 18â34TW. These three methods consistently yield maximum estimates in the range of 18â68TW and are notably less than recent estimates that claim abundant wind power availability. Furthermore, we show with the general circulation model simulations that some climatic effects at maximum wind power extraction are similar in magnitude to those associated with a doubling of atmospheric CO2. We conclude that in order to understand fundamental limits to renewable energy resources, as well as the impacts of their utilization, it is imperative to use a âtopdownâ thermodynamic Earth system perspective, rather than the more common âbottom-upâ engineering approach
- âŠ