7 research outputs found
Gut microbial communities and pathogens infection in New Zealand bumble bees (Bombus terrestris, Linnaeus, 1758)
The gut microbiome is an important component of bee health. Previous research around the globe indicated that bee gut microbiome can be affected by the presence of pathogens. We surveyed for the presence of three specific pathogens in populations of the buff-tailed bumble bee, Bombus terrestris (Linnaeus, 1758), across New Zealand. The pathogen Crithidia bombi was the most prevalent and widespread pathogen across the studied sites, with prevalence ranging from 30 to 100% of the bees examined. Nosema bombi was, however, only found in North Island sites. The Deformed wing virus was detected in bumble bees at all the sites except one (Twizel in the South Island) with prevalence ranging from 0 to 60%. The B. terrestris gut microbiome and the associated pathogens from two contrasting locations were studied. Bacteria such as Snodgrassella alvi and Lactobacillales were observed. We also found that infections with C. bombi were associated with more diverse, distinct gut microbiome perhaps indicating disruptions of gut microbe communities that contribute to impair bumble bees’ health
Genetic strain diversity of multi-host RNA viruses that infect a wide range of pollinators and associates is shaped by geographic origins
Emerging viruses have caused concerns about pollinator population declines, as multi-host RNA viruses may pose a health threat to pollinators and associated arthropods. In order to understand the ecology and impact these viruses have, we studied their host range and determined to what extent host and spatial variation affect strain diversity. Firstly, we used RT-PCR to screen pollinators and associates, including honey bees (Apis mellifera) and invasive Argentine ants (Linepithema humile), for virus presence and replication. We tested for the black queen cell virus (BQCV), deformed wing virus (DWV), and Kashmir bee virus (KBV) that were initially detected in bees, and the two recently discovered Linepithema humile bunya-like virus 1 (LhuBLV1) and Moku virus (MKV). DWV, KBV, and MKV were detected and replicated in a wide range of hosts and commonly co-infected hymenopterans. Secondly, we placed KBV and DWV in a global phylogeny with sequences from various countries and hosts to determine the association of geographic origin and host with shared ancestry. Both phylogenies showed strong geographic rather than host-specific clustering, suggesting frequent inter-species virus transmission. Transmission routes between hosts are largely unknown. Nonetheless, avoiding the introduction of non-native species and diseased pollinators appears important to limit spill overs and disease emergence
Distinct pathogens trigger different immune responses in the invasive Argentine ant
No description supplie
Different bacterial and viral pathogens trigger distinct immune responses in a globally invasive ant
Invasive species populations periodically collapse from high to low abundance, sometimes even to extinction. Pathogens and the burden they place on invader immune systems have been hypothesised as a mechanism for these collapses. We examined the association of the bacterial pathogen (Pseudomonas spp.) and the viral community with immune gene expression in the globally invasive Argentine ant (Linepithema humile (Mayr)). RNA-seq analysis found evidence for 17 different viruses in Argentine ants from New Zealand, including three bacteriophages with one (Pseudomonas phage PS-1) likely to be attacking the bacterial host. Pathogen loads and prevalence varied immensely. Transcriptomic data showed that immune gene expression was consistent with respect to the viral classification of negative-sense, positive-sense and double-stranded RNA viruses. Genes that were the most strongly associated with the positive-sense RNA viruses such as the Linepithema humile virus 1 (LHUV-1) and the Deformed wing virus (DWV) were peptide recognition proteins assigned to the Toll and Imd pathways. We then used principal components analysis and regression modelling to determine how RT-qPCR derived immune gene expression levels were associated with viral and bacterial loads. Argentine ants mounted a substantial immune response to both Pseudomonas and LHUV-1 infections, involving almost all immune pathways. Other viruses including DWV and the Kashmir bee virus appeared to have much less immunological influence. Different pathogens were associated with varying immunological responses, which we hypothesize to interact with and influence the invasion dynamics of this species
The native and exotic prey community of two invasive paper wasps (Hymenoptera: Vespidae) in New Zealand as determined by DNA barcoding
Social wasps are invasive in many regions around the world. In their new communities, introduced predators such as these wasps may be beneficial as consumers of exotic pests, but they will also consume native species. Here, we examined the diet of the exotic European paper wasp (Polistes dominula) and the closely related congener, Polistes chinensis, in a region of New Zealand where they co-occur. DNA barcoding was used to analyse their diet. The diet of both wasp species was largely Lepidopteran but other orders such as Hemiptera, Diptera and Coleoptera were also represented. Our analysis showed substantial site-to-site variation in diet. The two wasps differed significantly in their prey, although these differences appear to be driven by taxa identified from a small number of DNA reads in a small number of samples. Native and introduced fauna were represented in the diets of both wasps and included important agricultural pests. Of the 92 prey taxa able to be identified to species level, 81 were identified as exotic or introduced to New Zealand. The remaining 11 were species native to New Zealand. However, our estimates suggest over 50% of the prey DNA in the wasp diet is derived from native species. These wasps are abundant in some coastal and urban habitats, where they are likely to consume pest species as well as native species of conservation importance. The ecosystem services or costs and benefits provided by these invasive species are likely to be contingent on the prey communities and habitats they occupy
Behavioural variation and plasticity along an invasive ant introduction pathway
Once established in new areas, introduced species may exhibit changes in their biology due to phenotypic plasticity, novel selection pressures and genetic drift. Moreover, the introduction process itself has been hypothesised to act as a selective filter for traits that promote invasiveness. We tested the hypothesis that behaviours thought to promote invasiveness—such as increased foraging activity and aggression—are selected for during invasion by comparing traits among native and introduced populations of the widespread Argentine ant (Linepithema humile). We studied Argentine ant populations in the native range in Argentina and in three invaded regions along an introduction pathway: California, Australia and New Zealand. In each region, we set up 32 experimental colonies to measure foraging activity and interspecific aggression in a subset of the study regions. These colonies were subject to experimental manipulation of carbohydrate availability and octopamine, a biogenic amine known to modulate behaviour in insects, to measure variation in behavioural plasticity. We found variation in foraging activity among populations, but this variation was not consistent with selection on behaviour in relation to the invasion process. We found that colonies with limited access to carbohydrates exhibited unchanged exploratory behaviour, but higher exploitation activity and lower aggression. Colonies given octopamine consistently increased foraging behaviour (both exploration and exploitation), as well as aggression when also sugar-deprived. There was no difference in the degree of behavioural response to our experimental treatments along the introduction pathway. We did not find support for selection of behavioural traits associated with invasiveness along the Argentine ant's introduction pathway or clear evidence for an association between the introduction process and variation in behavioural plasticity. These results indicate that mechanisms promote behavioural variation in a similar fashion both in native and introduced ranges. Our results challenge the assumption that introduced populations always perform better in key behavioural traits hypothesised to be associated with invasion success
Viral and fungal pathogens associated with Pneumolaelaps niutirani (Acari: Laelapidae): a mite found in diseased nests of Vespula wasps
© 2019, International Union for the Study of Social Insects (IUSSI). Introduced social wasps (Vespula spp.) are a pest in many parts of the world. Recently, a mite species (Pneumolaelaps niutirani) was described and associated with disease symptoms in wasps. The mite does not appear to directly parasitise the wasps, but has been observed in high abundance, feeding on exudates from the mouths of larvae. We investigated the viral and fungal pathogens community in these mites and wasps. We found known viruses including Moku virus in both wasps and mites. Moku virus replicated in mites, likely indicating parasitism. Deformed wing virus, commonly found in wasps, was also detected in mite samples. Furthermore, the presence of putative viral transcripts related to 38 distinct viruses, including seven viruses previously isolated from arthropods, indicated that there may be many more viruses associated with the mite that are potentially shared with Vespula wasps. We also found generalist entomopathogenic fungus Aspergillus to infect both mites and wasps. Twelve distinct Aspergillus species were observed, all of which were found in wasp larvae from nests displaying symptoms of disease, with only one species in larvae from apparently healthy nests. Aspergillus novofumigatus was the most common of these species observed in wasps. Six Aspergillus species, including A. novofumigatus were detected in mites. Aspergillus loads were significantly higher in larvae from diseased nests. Our exploratory study indicates that mites can harbour both viruses and fungi that infect wasps, providing avenues of research into biological control using mites as infection vectors