22 research outputs found

    Purinergic signalling links mechanical breath profile and alveolar mechanics with the pro-inflammatory innate immune response causing ventilation-induced lung injury

    Get PDF
    Severe pulmonary infection or vigorous cyclic deformation of the alveolar epithelial type I (AT I) cells by mechanical ventilation leads to massive extracellular ATP release. High levels of extracellular ATP saturate the ATP hydrolysis enzymes CD39 and CD73 resulting in persistent high ATP levels despite the conversion to adenosine. Above a certain level, extracellular ATP molecules act as danger-associated molecular patterns (DAMPs) and activate the pro-inflammatory response of the innate immunity through purinergic receptors on the surface of the immune cells. This results in lung tissue inflammation, capillary leakage, interstitial and alveolar oedema and lung injury reducing the production of surfactant by the damaged AT II cells and deactivating the surfactant function by the concomitant extravasated serum proteins through capillary leakage followed by a substantial increase in alveolar surface tension and alveolar collapse. The resulting inhomogeneous ventilation of the lungs is an important mechanism in the development of ventilation-induced lung injury. The high levels of extracellular ATP and the upregulation of ecto-enzymes and soluble enzymes that hydrolyse ATP to adenosine (CD39 and CD73) increase the extracellular adenosine levels that inhibit the innate and adaptive immune responses rendering the host susceptible to infection by invading microorganisms. Moreover, high levels of extracellular adenosine increase the expression, the production and the activation of pro-fibrotic proteins (such as TGF-β, α-SMA, etc.) followed by the establishment of lung fibrosis

    Lung surfactant alterations in pulmonary thromboembolism

    No full text
    Abstract Beside neonatal respiratory distress syndrome, secondary surfactant deficiency may occur in patients with mature lungs. Recent studies revealed quantitative and qualitative changes of lung surfactant in pulmonary thromboembolism (PTE) concerning the total phospholipids content in BAL fluid, alterations in surfactant phospholipids classes and a large-to-small aggregates ratio. Reduced expression of surfactant protein A (SP-A) mRNA and SP-A in lung tissue after pulmonary embolism was found. Serum levels of SP-A were significantly higher in patients with PTE than in other lung diseases, except COPD. Surfactant changes in PTE may result from damage of type II cells by hypoxia, leakage of plasma proteins into the airspaces and/or by reactive oxygen species. They can contribute to lung atelectasis and edema, and a further reduction in oxygen saturation as seen in clinical picture of PTE. Surfactant changes are reliable marker of lung injury that might become a prognostic indicator in patients with pulmonary thromboembolism.</p

    The effect of orthostatic stress on multiscale entropy of heart rate and blood pressure

    No full text
    Cardiovascular control acts over multiple time scales, which introduces a significant amount of complexity to heart rate and blood pressure time series. Multiscale entropy (MSE) analysis has been developed to quantify the complexity of a time series over multiple time scales. In previous studies, MSE analyses identified impaired cardiovascular control and increased cardiovascular risk in various pathological conditions. Despite the increasing acceptance of the MSE technique in clinical research, information underpinning the involvement of the autonomic nervous system in the MSE of heart rate and blood pressure is lacking. The objective of this study is to investigate the effect of orthostatic challenge on the MSE of heart rate and blood pressure variability (HRV, BPV) and the correlation between MSE (complexity measures) and traditional linear (time and frequency domain) measures. MSE analysis of HRV and BPV was performed in 28 healthy young subjects on 1000 consecutive heart beats in the supine and standing positions. Sample entropy values were assessed on scales of 1–10. We found that MSE of heart rate and blood pressure signals is sensitive to changes in autonomic balance caused by postural change from the supine to the standing position. The effect of orthostatic challenge on heart rate and blood pressure complexity depended on the time scale under investigation. Entropy values did not correlate with the mean values of heart rate and blood pressure and showed only weak correlations with linear HRV and BPV measures. In conclusion, the MSE analysis of heart rate and blood pressure provides a sensitive tool to detect changes in autonomic balance as induced by postural change.Zuzana Turianikova, Kamil Javorka, Mathias Baumert, Andrea Calkovska, and Michal Javork

    Multiscale time irreversibility of heart rate and blood pressure variability during orthostasis

    No full text
    Time irreversibility is a characteristic feature of non-equilibrium, complex systems such as the cardiovascular control mediated by the autonomic nervous system (ANS). Time irreversibility analysis of heart rate variability (HRV) and blood pressure variability (BPV) represents a new approach to assess cardiovascular regulatory mechanisms. The aim of this paper was to assess the changes in HRV and BPV irreversibility during the active orthostatic test (a balance of ANS shifted towards sympathetic predominance) in 28 healthy young subjects.We used three different time irreversibility indices— Porta’s, Guzik’s and Ehler’s indices (P%, G%and E, respectively) derived from data segments containing 1000 beat-to-beat intervals on four timescales. We observed an increase in the HRV and a decrease in the BPV irreversibility during standing compared to the supine position. The postural change in irreversibility was confirmed by surrogate data analysis. The differences were more evident in G% and E than P% and for higher scale factors. Statistical analysis showed a close relationship between G% and E. Contrary to this, the association between P% and G% and P% and E was not proven. We conclude that time irreversibility of beat-to-beat HRV and BPV is significantly altered during orthostasis, implicating involvement of the autonomous nervous system in its generation.L. Chladekova, B. Czippelova, Z. Turianikova, I. Tonhajzerova, A. Calkovska, M. Baumert and M. Javork

    Effects of Conventional Mechanical Ventilation Performed by Two Neonatal Ventilators on the Lung Functions of Rabbits with Meconium-Induced Acute Lung Injury

    No full text
    Severe meconium aspiration syndrome (MAS) in the neonates often requires a ventilatory support. As a method of choice, a conventional mechanical ventilation with small tidal volumes (VT<6 ml/kg) and appropriate ventilatory pressures is used. The purpose of this study was to assess the short-term effects of the small-volume CMV performed by two neonatal ventilators: Aura V (Chirana Stara Tura a.s., Slovakia) and SLE5000 (SLE Ltd., UK) on the lung functions of rabbits with experimentally-induced MAS and to estimate whether the newly developed neonatal version of the ventilator Aura V is suitable for ventilation of the animals with MAS

    Effects of long-term oxygen treatment on <it>α</it>-ketoglutarate dehydrogenase activity and oxidative modifications in mitochondria of the guinea pig heart

    No full text
    <p>Abstract</p> <p>Objective</p> <p>Oxygen therapy is used for the treatment of various diseases, but prolonged exposure to high concentrations of O<sub>2 </sub>is also associated with formation of free radicals and oxidative damage.</p> <p>Methods</p> <p>In the present study we compared α-ketoglutarate dehydrogenase (KGDH) activity and mitochondrial oxidative damage in the hearts of guinea pigs after long-term (17 and 60 h) oxygenation with 100% normobaric O<sub>2 </sub>and with partially negatively (O<sub>2 neg</sub>) or positively (O<sub>2 posit</sub>) ionized oxygen.</p> <p>Results</p> <p>Inhalation of O<sub>2 </sub>led to significant loss in KGDH activity and thiol group content and accumulation of bityrosines. Inhalation of O<sub>2 neg </sub>was accompanied by more pronounced KGDH inhibition, possibly due to additional formation of protein-lipid conjugates. In contrast, O<sub>2 </sub>posit prevented loss in KGDH activity and diminished mitochondrial oxidative damage.</p> <p>Conclusions</p> <p>These findings suggest that oxygen treatment is associated with impairment of heart energy metabolism and support the view that inhalation of O<sub>2 posit </sub>optimizes the beneficial effects of oxygen therapy.</p
    corecore