732 research outputs found
Virus-specific T cells for the immunocompromised patient
While progress has been made in the treatment of both hematologic cancers and solid tumors, chemorefractory or relapsed disease often portends a dismal prognosis, and salvage chemotherapy or radiation expose patients to intolerable toxicities and may not be effective. Hematopoietic stem cell transplant offers the promise of cure for many patients, and while mismatched, unrelated or haploidentical donors are increasingly available, the recipients are at higher risk of severe immunosuppression and immune dysregulation due to graft versus host disease. Viral infections remain a primary cause of severe morbidity and mortality in this patient population. Again, many therapeutic options for viral disease are toxic, may be ineffective or generate resistance, or fail to convey long-term protection. Adoptive cell therapy with virus-specific T cells (VSTs) is a targeted therapy that is efficacious and has minimal toxicity in immunocompromised patients with CMV and EBV infections in particular. Products have since been generated specific for multiple viral antigens (multi-VST), which are not only effective but also confer protection in 70-90% of recipients when used as prophylaxis. Notably, these products can be generated from either virus-naive or virus-experienced autologous or allogeneic sources, including partially matched HLA-matched third-party donors. Obstacles to effective VST treatment are donor availability and product generation time. Banking of third-party VST is an attractive way to overcome these constraints and provide products on an as-needed basis. Other developments include epitope discovery to broaden the number of viral antigens targets in a single product, the optimization of VST generation from naive donor sources, and the modification of VSTs to enhance persistence and efficacy in vivo. © 2017 Houghtelin and Bollard
Immunotherapy for Epstein-Barr Virus-Related Lymphomas
Latent EBV infection is associated with several malignancies, including EBV post-transplant lymphoproliferative disorders (LPD), Hodgkin and non-Hodgkin lymphomas, nasopharyngeal carcinoma and Burkitt lymphoma. The range of expression of latent EBV antigens varies in these tumors, which influences how susceptible the tumors are to immunotherapeutic approaches. Tumors expressing type III latency, such as in LPD, express the widest array of EBV antigens making them the most susceptible to immunotherapy. Treatment strategies for EBV-related tumors include restoring normal cellular immunity by adoptive immunotherapy with EBV-specific T cells and targeting the malignant B cells with monoclonal antibodies. We review the current immunotherapies and future studies aimed at targeting EBV antigen expression in these tumors
Automated detection of lameness in sheep using machine learning approaches: novel insights into behavioural differences among lame and non-lame sheep
Lameness in sheep is the biggest cause of concern regarding poor health and welfare among sheep producing countries. Best practice for lameness relies on rapid treatment, yet there are no objective measures of lameness detection. Use of accelerometers and gyroscopes have been widely used in human activity studies and their use is becoming increasingly common in livestock. In this study, we used 23 datasets (10 non-lame and 13 lame sheep) from an accelerometer and gyroscope-based ear sensor with a sampling frequency of 16 Hz to develop and compare algorithms that can differentiate lameness within three different activities (walking, standing and lying). We show for the first time that features extracted from accelerometer and gyroscope signals can differentiate between lame and non-lame sheep while standing, walking and lying. The random forest algorithm performed best for classifying lameness with accuracy of 84.91% within lying, 81.15% within standing and 76.83% within walking and overall correctly classified over 80% sheep within activities. Both accelerometer and gyroscope-based features ranked among the top 10 features for classification. Our results suggest that novel behavioural differences between lame and non-lame sheep across all three activities could be used to develop an automated system for lameness detection
Vorinostat Renders the Replication-Competent Latent Reservoir of Human Immunodeficiency Virus (HIV) Vulnerable to Clearance by CD8 T Cells
Latently human immunodeficiency virus (HIV)-infected cells are transcriptionally quiescent and invisible to clearance by the immune system. To demonstrate that the latency reversing agent vorinostat (VOR) induces a window of vulnerability in the latent HIV reservoir, defined as the triggering of viral antigen production sufficient in quantity and duration to allow for recognition and clearance of persisting infection, we developed a latency clearance assay (LCA). The LCA is a quantitative viral outgrowth assay (QVOA) that includes the addition of immune effectors capable of clearing cells expressing viral antigen. Here we show a reduction in the recovery of replication-competent virus from VOR exposed resting CD4 T cells following addition of immune effectors for a discrete period.
TAKE HOME MESSAGE: VOR exposure leads to sufficient production of viral protein on the cell surface, creating a window of vulnerability within this latent reservoir in antiretroviral therapy (ART)-suppressed HIV-infected individuals that allows the clearance of latently infected cells by an array of effector mechanisms
Morphology, adipocyte size, and fatty acid analysis of dairy cattle digital cushions, and the effect of body condition score and age
The digital cushion is an essential part of maintaining a healthy foot, working to dissipate foot strike and body weight forces and lameness from claw horn disruption lesions. Despite the importance of the digital cushion, little is known about the basic anatomy, adipocyte morphology, and fatty acid composition in relation to age, limb position, and body condition score. In total, 60 claws (from 17 cows) were selected and collected from a herd, ensuring that body condition score data and computed micro-tomography were known for each animal. Digital cushion tissue underwent histological staining combined with stereology, systematic random sampling, and cell morphology analysis, in addition to lipid extraction followed by fatty acid analysis. The results describe digital cushion architecture and adipocyte sizes. Adipocyte size was similar across all 4 claws (distal left lateral and medial and distal right lateral and medial) and across the ages (aged 2–7 yr); however, animals with body condition score of 3.00 or more at slaughter had a significantly increased cell size in comparison to those with a score of less than 2.50. Of 37 fatty acid methyl esters identified, 5 differed between either the body condition score or different age groups. C10:0 capric acid, C14:0 myristic acid, C15:0 pentadecanoic acid, and C20:0 arachidic acid percentages were all lesser in lower body condition score cows, whereas C22:1n-9 erucic acid measurements were lesser in younger cows. Saturated fatty acid, monounsaturated fatty acid, and polyunsaturated fatty acid percentages were not altered in the different claws, ages, or body condition score groups. Triglyceride quantities did not differ for claw position or age but had decreased quantities in lower body condition score animals. Digital cushion anatomy, cellular morphology, and fatty acid composition have been described in general and also in animals with differing ages, body condition scores, and in the differing claws. Understanding fat deposition, mobilization, and composition are essential in not only understanding the roles that the digital cushion plays but also in preventing disorders and maintaining cattle health and welfare
Histone deacetylase inhibitors in Hodgkin lymphoma
Although Hodgkin lymphoma (HL) is considered one of the most curable human cancers, the treatment of patients with relapsed and refractory disease, especially those who relapse after autologous stem cell transplantation, remains challenging. Furthermore, because of the young age of these patients, the impact of early mortality on the number of years lost from productive life is remarkable. Patients with relapsed HL post stem cell transplantation currently have no curative therapy, and are in need for new drugs and novel treatment strategies. While no new drugs have been approved for the treatment of patients with HL in more than three decades, several new agents are demonstrating promising results in early clinical trials. This review will focus on the emerging role of histone deacetylase inhibitors in patients with relapsed HL
- …