619 research outputs found
Kondo Effect in a Many-Electron Quantum Ring
The Kondo effect is investigated in a many-electron quantum ring as a
function of magnetic field. For fields applied perpendicular to the plane of
the ring a modulation of the Kondo effect with the Aharonov-Bohm period is
observed. This effect is discussed in terms of the energy spectrum of the ring
and the parametrically changing tunnel coupling. In addition, we use gate
voltages to modify the ground-state spin of the ring. The observed splitting of
the Kondo-related zero-bias anomaly in this configuration is tuned with an
in-plane magnetic field.Comment: 4 pages, 4 figure
Singlet-Triplet Transition Tuned by Asymmetric Gate Voltages in a Quantum Ring
Wavefunction and interaction effects in the addition spectrum of a Coulomb
blockaded many electron quantum ring are investigated as a function of
asymmetrically applied gate voltages and magnetic field. Hartree and exchange
contributions to the interaction are quantitatively evaluated at a crossing
between states extended around the ring and states which are more localized in
one arm of the ring. A gate tunable singlet-triplet transition of the two
uppermost levels of this many electron ring is identified at zero magnetic
field.Comment: 4 page
Transport properties of quantum dots with hard walls
Quantum dots are fabricated in a Ga[Al]As-heterostructure by local oxidation
with an atomic force microscope. This technique, in combination with top gate
voltages, allows us to generate steep walls at the confining edges and small
lateral depletion lengths. The confinement is characterized by low-temperature
magnetotransport measurements, from which the dots' energy spectrum is
reconstructed. We find that in small dots, the addition spectrum can
qualitatively be described within a Fock-Darwin model. For a quantitative
analysis, however, a hard-wall confinement has to be considered. In large dots,
the energy level spectrum deviates even qualitatively from a Fock-Darwin model.
The maximum wall steepness achieved is of the order of 0.4 meV/nm.Comment: 9 pages, 5 figure
Transmission Phase Through Two Quantum Dots Embedded in a Four-Terminal Quantum Ring
We use the Aharonov-Bohm effect in a four-terminal ring based on a Ga[Al]As
heterostructure for the measurement of the relative transmission phase. In each
of the two interfering paths we induce a quantum dot. The number of electrons
in the two dots can be controlled independently. The transmission phase is
measured as electrons are added to or taken away from the individual quantum
dots.Comment: 3 pages, 4 figure
Transport properties of quantum dots with hard walls
Quantum dots are fabricated in a Ga[Al]As-heterostructure by local oxidation
with an atomic force microscope. This technique, in combination with top gate
voltages, allows us to generate steep walls at the confining edges and small
lateral depletion lengths. The confinement is characterized by low-temperature
magnetotransport measurements, from which the dots' energy spectrum is
reconstructed. We find that in small dots, the addition spectrum can
qualitatively be described within a Fock-Darwin model. For a quantitative
analysis, however, a hard-wall confinement has to be considered. In large dots,
the energy level spectrum deviates even qualitatively from a Fock-Darwin model.
The maximum wall steepness achieved is of the order of 0.4 meV/nm.Comment: 9 pages, 5 figure
Efficient Spatial Redistribution of Quantum Dot Spontaneous Emission from 2D Photonic Crystals
We investigate the modification of the spontaneous emission dynamics and
external quantum efficiency for self-assembled InGaAs quantum dots coupled to
extended and localised photonic states in GaAs 2D-photonic crystals. The
2D-photonic bandgap is shown to give rise to a 5-10 times enhancement of the
external quantum efficiency whilst the spontaneous emission rate is
simultaneously reduced by a comparable factor. Our findings are quantitatively
explained by a modal redistribution of spontaneous emission due to the modified
local density of photonic states. The results suggest that quantum dots
embedded within 2D-photonic crystals are suitable for practical single photon
sources with high external efficiency
Electronic properties of antidot lattices fabricated by atomic force lithography
Antidot lattices were fabricated by atomic force lithography using local
oxidation. High quality finite 20 x20 lattices are demonstrated with periods of
300 nm. The low temperature magnetoresistance shows well developed
commensurability oscillations as well as a quenching of the Hall effect around
zero magnetic field. In addition, we find B periodic oscillations superimposed
on the classical commensurability peaks at temperatures as high as 1.7 K. These
observations indicate the high electronic quality of our samples.Comment: Appl. Phys. Lett., in prin
Magnetic field dependent transmission phase of a double dot system in a quantum ring
The Aharonov-Bohm effect is measured in a four-terminal open ring geometry
based on a Ga[Al]As heterostructure. Two quantum dots are embedded in the
structure, one in each of the two interfering paths. The number of electrons in
the two dots can be controlled independently. The transmission phase is
measured as electrons are added to or taken away from the individual quantum
dots. Although the measured phase shifts are in qualitative agreement with
theoretical predictions, the phase evolution exhibits unexpected dependence on
the magnetic field. For example, phase lapses are found only in certain ranges
of magnetic field.Comment: 5 pages, 4 figure
Quantum Hall Ferromagnetism in a Two-Dimensional Electron System
Experiments on a nearly spin degenerate two-dimensional electron system
reveals unusual hysteretic and relaxational transport in the fractional quantum
Hall effect regime. The transition between the spin-polarized (with fill
fraction ) and spin-unpolarized () states is accompanied
by a complicated series of hysteresis loops reminiscent of a classical
ferromagnet. In correlation with the hysteresis, magnetoresistance can either
grow or decay logarithmically in time with remarkable persistence and does not
saturate. In contrast to the established models of relaxation, the relaxation
rate exhibits an anomalous divergence as temperature is reduced. These results
indicate the presence of novel two-dimensional ferromagnetism with a
complicated magnetic domain dynamic.Comment: 15 pages, 5 figure
- …