17 research outputs found

    식물 λ‚΄ μƒμ²˜μ‹ ν˜ΈλΆ„μž κ²€μΆœμ„ μœ„ν•œ 금 λ‚˜λ…Έμž…μž-단일벽 νƒ„μ†Œλ‚˜λ…ΈνŠœλΈŒ 기반 ν‘œλ©΄μ¦κ°•λΌλ§Œμ‚°λž€ μ„Όμ„œ ν•©μ„±

    Get PDF
    ν•™μœ„λ…Όλ¬Έ(석사) -- μ„œμšΈλŒ€ν•™κ΅λŒ€ν•™μ› : 농업생λͺ…κ³Όν•™λŒ€ν•™ λ†λ¦Όμƒλ¬Όμžμ›ν•™λΆ€, 2023. 2. κ³½μ„ μ˜.Detection of the plant signaling molecules before developing visible symptoms is important for early diagnosis of the plant's disease. In this study, a single-walled carbon nanotube (SWNT)-based surface-enhanced Raman scattering (SERS) nanosensor was fabricated for detecting plant signaling molecules under abiotic stress. SWNT was functionalized with a single-strand DNA (ssDNA) to prepare a SERS template, which provided binding sites for positively charged gold nanoparticles (AuNPs). Initially, AuNPs were grown on the surface of SWNT, but this process was relatively uncontrollable and caused large agglomerates. On the other hand, positively charged poly (diallyldimethylammonium chloride) capped AuNPs (PDDA-AuNPs) could densely assemble along the sidewall of the SWNT through electrostatic interaction and create a large number of hot spots. In vitro SERS spectra of the endogenous plant signaling molecules such as nasturlexin B, thiamine, and ATP were obtained using the nanosensor, and distinct SERS bands of each analyte were shown in the SERS spectra. Biocompatibility of the nanosensor in living plants was demonstrated by measuring the chlorophyll contents and propidium iodide (PI) assay. The strong G band of the SWNT identified the location of the nanosensor in the plants. In addition, the SERS band of the nasturlexin B, one of the plant stress signaling molecules, was presented in SERS mapping obtained upon wounding the leaf. Through our study, plant stress was detected in advance using a SERS nanosensor, which will be of great help in preventing crop loss by monitoring continual plant stress.μž‘λ¬Ό 생산성 증진을 μœ„ν•΄μ„œλŠ” κ°€μ‹œμ μΈ 증상 이 λ‚˜νƒ€λ‚˜κΈ° 전에 μ‹λ¬Όμ˜ 슀트레슀λ₯Ό μ§„λ‹¨ν•˜λŠ” 것이 ν•„μš”ν•˜λ‹€. λ³Έ μ—°κ΅¬μ—μ„œλŠ” 비생물적 슀트레슀 인 μƒμ²˜μ— μ˜ν•΄ μƒμ„±λ˜λŠ” 식물 μ‹ ν˜Έ λΆ„μžλ₯Ό κ°μ§€ν•˜κΈ° μœ„ν•œ 단일벽 νƒ„μ†Œλ‚˜λ…ΈνŠœλΈŒ (SWNT) 기반의 ν‘œλ©΄μ¦κ°•μ‚°λž€ (SERS) λ‚˜λ…Έ μ„Όμ„œλ₯Ό μ œμž‘ν–ˆλ‹€. SWNTλ₯Ό (GT)15 μ„œμ—΄μ„ 가진 단일 κ°€λ‹₯ DNA둜 κΈ°λŠ₯ν™” ν•œ (GT)15-SWNTλ₯Ό 금 λ‚˜λ…Έμž…μžλ₯Ό μ§ˆμ„œμžˆκ²Œ μ§‘ν•©μ‹œν‚€κΈ° μœ„ν•œ ν…œν”Œλ¦ΏμœΌλ‘œ μ‚¬μš©ν•˜μ˜€λ‹€. (GT)15-SWNT ν‘œλ©΄ μ—μ„œμ˜ L-μ•„μŠ€μ½”λ₯΄λΈŒμ‚°μ— μ˜ν•œ 금 λ‚˜λ…Έμž…μž ν•©μ„± 은 ν†΅μ œ λΆˆκ°€λŠ₯ν•œ 금 λ‚˜λ…Έμž…μž 응집을 ν˜•μ„±ν–ˆκΈ° λ•Œλ¬Έμ— AuNPλ₯Ό 밀도 있게 μœ„μΉ˜μ‹œν‚€λŠ” 데 효과적인 방법이 μ•„λ‹ˆμ—ˆλ‹€. λ°˜λ©΄μ—, PDDA κ³ λΆ„μžλ‘œ κΈ°λŠ₯ν™”λ˜μ–΄ μ–‘μ „ν•˜λ₯Ό λ„λŠ” 금 λ‚˜λ…Έμž…μžλŠ” 정전기적 μƒν˜Έμž‘μš©μ„ 톡해 (GT)15-SWNT의 츑벽을 따라 μ‘°λ°€ν•˜κ²Œ μœ„μΉ˜ν•  수 μžˆμ—ˆκ³ , λ§Žμ€ 수의 ν•«μŠ€νŒŸμ„ μ„±κ³΅μ μœΌλ‘œ μƒμ„±ν•˜μ˜€μœΌλ©° 4.07 β…Ή 10^6의 enhancement factor 값을 κ°€μ‘Œλ‹€. SERS λ‚˜λ…Έμ„Όμ„œλ₯Ό μ‚¬μš©ν•˜μ—¬ nasturlexin B, TA, ATP와 같은 내인성 식물 μ‹ ν˜Έ 물질의 SERS μŠ€νŽ™νŠΈλŸΌμ„ μ–»μ—ˆμœΌλ©°, ν˜Όν•©λ¬Όμ—μ„œλ„ 각 뢄석물 이 κ°€μ§€λŠ” 고유의 SERS 피크가 SERS μŠ€νŽ™νŠΈλŸΌμ— λ‚˜νƒ€λ‚¨μ„ 톡해 λ‹€μ€‘κ²€μΆœμ΄ κ°€λŠ₯함을 ν™•μΈν–ˆλ‹€. 식물체 λ‚΄ SERS λ‚˜λ…Έμ„Όμ„œμ˜ 생체적합성은 μ—½λ‘μ†Œμ˜ 농도와 PI 뢄석을 톡해 ν™•μΈν–ˆκ³ , SWNT의 κ°•ν•œ 라만 μ‹ ν˜Έλ₯Ό μ΄μš©ν•΄ λ‚˜λ…Έμ„Όμ„œκ°€ 식물체 λ‚΄λ‘œ 잘 λ„μž…λ˜μ—ˆμŒμ„ 증λͺ…ν–ˆλ‹€. λ‚˜λ…Έμ„Όμ„œκ°€ λ„μž…λœ 식물 μžŽμ— μƒμ²˜λ₯Ό λ‚Έ ν›„, 785 nm λ ˆμ΄μ €λ₯Ό μ‚¬μš©ν•΄ 얻은 SERS μŠ€νŽ™νŠΈλŸΌμ—μ„œ nasturlexin B μ‹ ν˜Έλ₯Ό μ‹€μ‹œκ°„ κ²€μΆœν•  수 μžˆμ—ˆλŠ”λ°, μ΄λŠ” 물냉이 식물과 같은 μ‹­μžν™”κ³Ό μ‹λ¬Όμ˜ μ£Όμš” 슀트레슀 μ‹ ν˜Έ 물질 쀑 ν•˜λ‚˜μ΄λ‹€. λ³Έ 연ꡬλ₯Ό 톡해 개발된 SERS λ‚˜λ…Έμ„Όμ„œλ₯Ό μ΄μš©ν•˜λ©΄ μ‹λ¬Όμ˜ 슀트레슀λ₯Ό μ§€μ†μ μœΌλ‘œ λͺ¨λ‹ˆν„°λ§ν•¨μœΌλ‘œμ¨ λ†μž‘λ¬Ό 생산성 ν–₯상에 κΈ°μ—¬ν•  수 μžˆμ„ κ²ƒμœΌλ‘œ κΈ°λŒ€λœλ‹€.β… . INTRODUCTION 1 β…‘. LITERATURE SURVEY 5 2.1. Surface-enhanced Raman scattering (SERS) 5 2.1.1. Principle of SERS 5 2.1.2. Biological application of SERS 6 2.2. Carbon nanomaterial for SERS template 7 2.2.1. Utilization of SWNT as a SERS template 7 2.2.2. Utilization of graphene as a SERS template10 2.3. Nanosensor for detecting plant endogenous signaling molecules in living plants 11 β…’. MATERIALS AND METHOD 13 3.1. Materials 13 3.2. Synthesis of (GT)15-SWNT 13 3.3. Gold nanoparticle decorated (GT)15-SWNT 15 3.4. Fabrication of PDDA-AuNP@SWNT 15 3.5. In vitro SERS spectrum acquisition 17 3.6. Plant growth 17 3.7. Biocompatibility of PDDA-AuNP@SWNT in plants 18 3.8. Monitoring of endogenous stress-dependent biomolecules in living 18 β…£. RESULTS AND DISCUSSION 20 4.1. Characterization of (GT)15-SWNT 20 4.2. Gold nanoparticle decorated (GT)15-SWNT 24 4.2.1. Gold nanoparticle growth on (GT)15-SWNT 24 4.2.2. PDDA capped gold nanoparticles decorated (GT)15-SWNT 29 4.3. Multiplex detection of endogenous plant signaling molecules in vitro 38 4.4. Biocompatibility of PDDA-AuNP@SWNT in plants 41 4.5. Monitoring of wound signal in living plants using nanosensor 43 β…€. CONCLUSION 47 References 49 ꡭ문초둝 61석

    19μ„ΈκΈ° μ „λ°˜ 홍경λͺ¨μ˜ μ—­μ‚¬μ„œμˆ 

    No full text

    <λ™κ΅­μ‚Όν•œμ‚¬κ΅°κ³ κΈˆκ°•μ—­μ„€> <λΆκ΄€μ£Όν˜„μ—°ν˜μ‹œλ§κΈ°>ν•΄μ œ

    No full text

    μ΄μˆ˜κ΄‘μ˜ ν•™λ¬Έκ³Ό 사상

    No full text

    λ‚΄κ°€ κ±Έμ–΄μ˜¨ μ—­μ‚¬ν•™μ˜ κΈΈ

    No full text
    λ‚˜λŠ” ν•œκ΅­μ‹ λ‚˜μ΄ 75μ„Έλ‘œ 아직 κ³Όκ±°λ₯Ό νšŒκ³ ν•  λ‚˜μ΄λ„ μ•„λ‹ˆκ³ , κΈˆλ…„μ—λ„ γ€Œμœ¨κ³‘ 이이평전」과 200자 원고지 μ•½ 1만 2천 맀 λΆ„λŸ‰μ˜ γ€Œκ³Όκ±°, μΆœμ„Έμ˜ 사닀리 - 쑱보λ₯Ό 톡해본 μ‘°μ„ μ‹œλŒ€ λ¬Έκ³ΌκΈ‰ 제자의 신뢄이동」(μ „ 4ꢌ)의 집필을 μ™„λ£Œν•œ μƒνƒœμ΄λ‹€. 아직은 ν˜„μž¬ 진행 쀑인 λ‚˜μ˜ μ—°κ΅¬μ‹œκ°μ΄ μ–΄λ–»κ²Œ 변할지도 λͺ¨λ₯΄λŠ” μƒν™©μ—μ„œ κ³Όκ±°λ₯Ό νšŒμƒν•˜λŠ” 이 μžλ¦¬κ°€ λΆ€λ‹΄μŠ€λŸ¬μš΄ 것이 사싀이닀. ν•˜μ§€λ§Œ, 쀑간보고도 μ „ν˜€ λ¬΄μ˜λ―Έν•œ 것은 아닐 κ²ƒμ΄λΌλŠ” μƒκ°μ—μ„œ 이 μžλ¦¬μ— λ‚˜μ˜€κ²Œ λ˜μ—ˆμŒμ„ μ–‘ν•΄ν•˜μ—¬ μ£ΌκΈ° λ°”λž€λ‹€

    The Jiphyeonjeon, Royal Research Institute and King Sejong

    No full text
    νŠΉλ³„κΈ°

    μ‘°μ„ μ‹œλŒ€ μ€‘μΈμ˜ μ‹ λΆ„.계급적 성격

    No full text

    17μ„ΈκΈ°ν›„λ°˜-18μ„ΈκΈ°μ΄ˆ ν™λ§Œμ’…μ˜ νšŒν†΅μ‚¬μƒκ³Ό μ—­μ‚¬μ˜μ‹

    No full text

    1910λ…„λŒ€μ˜ 민쑱주의적 μ—­μ‚¬μ„œμˆ 

    No full text

    κ°œν™”κΈ° μ•ˆμ’…ν™”μ˜ μ—­μ‚¬μ„œμˆ 

    No full text
    corecore