26 research outputs found
저비중지단백에 의한 단핵구 CD11b 수용체의 발현도 증가 및 CCR2 매개성 주화성 운동의 증가
Thesis (master`s)--서울대학교 대학원 :의학과 내과학전공,2001.Maste
SHANK3 overexpression causes manic-like behaviour with unique pharmacogenetic properties
Mutations in SHANK3 and large duplications of the region spanning SHANK3 both cause a spectrum of neuropsychiatric disorders, indicating that proper SHANK3 dosage is critical for normal brain function. However, SHANK3 overexpression perse has not been established as a cause of human disorders because 22q13 duplications involve several genes. Here we report that Shank3 transgenic mice modelling a human SHANK3 duplication exhibit manic-like behaviour and seizures consistent with synaptic excitatory/inhibitory imbalance. We also identified two patients with hyperkinetic disorders carrying the smallest SHANK3-spanning duplications reported so far. These findings indicate that SHANK3 overexpression causes a hyperkinetic neuropsychiatric disorder. To probe the mechanism underlying the phenotype, we generated a Shank3 in vivo interactome and found that Shank3 directly interacts with the Arp2/3 complex to increase F-actin levels in Shank3 transgenic mice. The mood-stabilizing drug valproate, but not lithium, rescues the manic-like behaviour of Shank3 transgenic mice raising the possibility that this hyperkinetic disorder has a unique pharmacogenetic profile
(A) study of social, cultual properties projected on images : based on my prints
학위논문(석사) --서울대학교 대학원 :서양화과(판화전공),2010.2.Maste
죽상경화의 발현에 관여하는 단핵구의 이동 및 침착기전에 대한 C 반응성 단백의 조절효과
Thesis(doctoral)--서울대학교 대학원 :의학과 내과학,2005.Docto
Development of single cell transcriptome analysis technology to expand support for group research using supercomputing
Characterization of the zinc-induced Shank3 interactome of mouse synaptosome
Variants of the SHANK3 gene, which encodes a core scaffold protein of the postsynaptic density of excitatory synapses, have been causally associated with numerous brain disorders. Shank3 proteins directly bind zinc ions through their C-terminal sterile α motif domain, which enhances the multimerization and synaptic localization of Shank3, to regulate excitatory synaptic strength. However, no studies have explored whether zinc affects the protein interactions of Shank3, which might contribute to the synaptic changes observed after zinc application. To examine this, we first purified Shank3 protein complexes from mouse brain synaptosomal lysates that were incubated with different concentrations of ZnCl2, and analyzed them with mass spectrometry. We used strict criteria to identify 71 proteins that specifically interacted with Shank3 when extra ZnCl2 was added to the lysate. To characterize the zinc-induced Shank3 interactome, we performed various bioinformatic analyses that revealed significant associations of the interactome with subcellular compartments, including mitochondria, and brain disorders, such as bipolar disorder and schizophrenia. Together, our results showing that zinc affected the Shank3 protein interactions of in vitro mouse synaptosomes provided an additional link between zinc and core synaptic proteins that have been implicated in multiple brain disorders
엔도시토시스 단백질에 의한 글루타메이트 수용체의 운송 및 시냅스 가소성 조절
학위논문(박사) - 한국과학기술원 : 생명과학과, 2009.2, [ v, 94 p. ]한국과학기술원 : 생명과학과
Integrative analysis of brain region-specific Shank3 interactomes for understanding the heterogeneity of neuronal pathophysiology related to SHANK3 mutations
Recent molecular genetic studies have identified hundreds of risk genes for various neurodevelopmental and neuropsychiatric disorders. As the number of risk genes increases, it is becoming clear that different mutations of a single gene could cause different types of disorders. One of the best examples of such a gene is SHANK3, which encodes a core scaffold protein of the neuronal excitatory postsynapse. Deletions, duplications, and point mutations of SHANK3 are associated with autism spectrum disorders, intellectual disability, schizophrenia, bipolar disorder, and attention deficit hyperactivity disorder. Nevertheless, how the different mutations of SHANK3 can lead to such phenotypic diversity remains largely unknown. In this study, we investigated whether Shank3 could form protein complexes in a brain region-specific manner, which might contribute to the heterogeneity of neuronal pathophysiology caused by SHANK3 mutations. To test this, we generated a medial prefrontal cortex (mPFC) Shank3 in vivo interactome consisting of 211 proteins, and compared this protein list with a Shank3 interactome previously generated from mixed hippocampal and striatal (HP+STR) tissues. Unexpectedly, we found that only 47 proteins (about 20%) were common between the two interactomes, while 164 and 208 proteins were specifically identified in the mPFC and HP+STR interactomes, respectively. Each of the mPFC- and HP+STR-specific Shank3 interactomes represents a highly interconnected network. Upon comparing the brain region-enriched proteomes, we found that the large difference between the mPFC and HP+STR Shank3 interactomes could not be explained by differential protein expression profiles among the brain regions. Importantly, bioinformatic pathway analysis revealed that the representative biological functions of the mPFC- and HP+STR-specific Shank3 interactomes were different, suggesting that these interactors could mediate the brain region-specific functions of Shank3. Meanwhile, the same analysis on the common Shank3 interactors, including Homer and GKAP/SAPAP proteins, suggested that they could mainly function as scaffolding proteins at the postsynaptic density. Lastly, we found that the mPFC- and HP+STR-specific Shank3 interactomes contained a significant number of proteins associated with neurodevelopmental and neuropsychiatric disorders. These results suggest that Shank3 can form protein complexes in a brain region-specific manner, which might contribute to the pathophysiological and phenotypic diversity of disorders related to SHANK3 mutations
Unexpected compensatory increase in Shank3 transcripts in Shank3 knock-out mice having partial deletions of exons
Genetic variants of the SH3 and multiple ankyrin repeat domains 3 (SHANK3) gene, which encodes excitatory postsynaptic core scaffolds cause numerous brain disorders. Several lines of Shank3 knock-out (KO) mice with deletions of different Shank3 exons have previously been generated and characterized. The different Shank3 KO mouse lines have both common and line-specific phenotypes. Shank3 isoform diversity is considered a mechanism underlying phenotypic heterogeneity, and compensatory changes through regulation of Shank3 expression may contribute to this heterogeneity. However, whether such compensatory changes occur in Shank3 KO mouse lines has not been investigated in detail. Using previously reported RNA-sequencing analyses, we identified an unexpected increase in Shank3 transcripts in two different Shank3 mutant mouse lines (Shank3B and Shank3ΔC) having partial deletions of Shank3 exons. We validated an increase in Shank3 transcripts in the hippocampus, cortex, and striatum, but not in the cerebellum, of Shank3B heterozygous (HET) and KO mice, using qRT-PCR analyses. In particular, expression of the N-terminal exons 1–12, but not the more C-terminal exons 19–22, was observed to increase in Shank3B mice with deletion of exons 13–16. This suggests a selective compensatory activation of upstream Shank3 promoters. Furthermore, using domain-specific Shank3 antibodies, we confirmed that the increased Shank3 transcripts in Shank3B KO mice produced a small Shank3 isoform that was not detected in wild-type mice. Taken together, our results illustrate another layer of complexity in the regulation of Shank3 expression in the brain, which may also contribute to the phenotypic heterogeneity of different Shank3 KO mouse lines
