19 research outputs found
์ฐ ์์ค์ ๋ฐ๋ง ํก์ ๋ฐฉ๋ฒ์ ์ด์ฉํ VEST ์ฅ์น์์์ ์ ์์จ๋ ์ง๋จ ์์คํ ๊ฐ๋ฐ
ํ์๋
ผ๋ฌธ (์์ฌ)-- ์์ธ๋ํ๊ต ๋ํ์ : ์๋์ง์์คํ
๊ณตํ๋ถ, 2014. 2. ํฉ์ฉ์.Electron temperature diagnostics using SXR (soft X-ray) absorber foil method has been developed to measure line averaged electron temperature of the VEST (Versatile Experiment Spherical Torus) at Seoul National University. SXR absorber foil method is relatively simple method to diagnose line averaged electron temperature, which is measured by the ratio of transmitted radiation intensity between two different thickness foils. It has very good time resolutions so it can be useful to detect various phenomena. Also it can be a complementary diagnostics of other electron temperature diagnostics such as Thomson scattering system.
The expected electron temperature of the VEST core plasmas is about one hundred eV. In order to measure temperatures in this range, aluminum foils with thicknesses of 0.8 ฮผm and 1.5 ฮผm aluminum foils are chosen by calculating the variations of intensity ratio and signal strength according to electron temperature. Each foil is located in front of detectors which are installed in the midplane of the VEST chamber to diagnose core plasmas. AXUV-16ELG photodiode is employed as a detector in favor of its good responsivity in the SXR region. Each signal lines are twisted and carefully shielded with copper braided wires which can reject electromagnetic noises.
This diagnostic method can be affected by impurity line radiation and non-thermal radiations generated by runaway electrons, so it is important to know the amount and causes of these radiations. Calculations are performed to estimate these radiation effects. From this calculation if there is oxygen line radiation which is considered as a major impurity in VEST overestimates or underestimates in measured electron temperature is expected according to its value. If there is non-thermal high energy radiations underestimated electron temperature is expected. To estimate intensity of these radiations two experimental components are prepared. Bandpass filter around 780 nm is used for monitoring the evolution of oxygen atom and an additional thick aluminum foil is used to see the effect of the non-thermal high energy photons. With these calculation and experimental setup H-alpha line signal and triple Langmuir probe are also used for the interpretation of experimental results.
To see the performance of the diagnostics test experiments are performed in ECH (Electron Cyclotron Heating) pre-ionized ohmic plasmas in VEST. In the first test experiments the electron temperature at the plasma current peak is about 110 eV and this value sustained almost the same during the plasma ramp down phase. In the latter part of the discharge large uncertainties are expected in measured electron temperature due to the high oxygen impurity amount.
Second test experiments are performed with two test cases that have different operating pressures and oxygen impurity amounts while other parameters are fixed. In this comparison two discharges with different electron temperatures expected. Difference in measured electron temperature is observed as expected.
However, transmitted emissions with 2.3 ฮผm thickness aluminum foil are too low compared with 0.8 ฮผm and 1.5 ฮผm thickness aluminum foil. With this result measured electron temperature is below 20 eV. There is large difference in two test experiments. Low transmitted emission level of 2.3 ฮผm can be explained by assuming the presence of non-thermal high energy radiations. And combined effect of non-thermal high energy radiation and oxygen impurity line radiation can be explaining the difference in measured electron temperature. When more precise diagnostics for these radiations is prepared, the potion of these radiation compare with continuum radiation can be determined then it is possible to diagnose the electron temperature more precisely.Contents
Abstract i
Contents v
List of Figures vii
Chapter 1 Introduction 1
Chapter 2 Theoretical Background 4
2.1 Radiation mechanisms of Soft X-ray in fusion device 4
2.2 Soft X-ray absorber foil method 5
2.2.1 Continuum radiation and Soft X-ray absorber foil method 6
2.2.2 Characteristic line radiation and non-thermal high energy radiation
and Soft X-ray absorber foil method 10
Chapter 3 Overal system design 15
3.1 Filter material and thickness 15
3.1.1 Filter materials 15
3.1.2 Filter thickness 17
3.2 Detector 20
3.3 Amplifier 24
3.4 Assembly of diagnostic system and installation on VEST 25
3.4.1 Foil and detector holder 25
3.4.2 Detector position 26
3.4.3 Collimator 28
3.4.4 Electromagnetic noise consideration 28
Chapter 4 Test experiments on VEST 30
4.1 Experimental setup 30
4.2 Test experiments โฆ..โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ...33
Chapter 5 Conclusion and future work 43
5.1 Conclusion 43
5.2 Future work 44
Bibliography 45
๊ตญ ๋ฌธ ์ด ๋ก 47Maste
KSTAR์์์ 1 MeV ํธ๋ฆฌํค ๊ฐ๋ ํน์ฑ ์ฐ๊ตฌ๋ฅผ ์ํ ํต์ตํฉ ์ค์ฑ์ ์ธก์ ์ ์ด์ฉํ ํธ๋ฆฌํค ์ฐ์ ํด์
ํ์๋
ผ๋ฌธ(๋ฐ์ฌ)--์์ธ๋ํ๊ต ๋ํ์ :๊ณต๊ณผ๋ํ ์๋์ง์์คํ
๊ณตํ๋ถ,2019. 8. ํฉ์ฉ์.Understanding the 3.5 MeV alpha particle confinement physics in deuterium (D) โ tritium (T) fusion plasma is important in terms of achieving burning plasma which is internal heating dominant and for vacuum vessel wall protection. The kinetic property of 1 MeV triton which is generated by the d-d fusion reaction is similar to that of 3.5 MeV fusion alpha particle. Thus it can be useful as a test particle to simulate a certain characteristics of the alpha particle in the D-T plasma.
A fraction of the produced 1 MeV fusion triton cannot be confined inside the bulk plasma and promptly loss to the wall due to its large drift orbit. Confined tritons without prompt loss, slowed down via Coulomb collision with background plasma and became thermalize. During the slowing down, secondary fusion reaction with background deuteron can occur and the 14 MeV d-t neutron can be produced. This secondary fusion reaction is called triton burnup and the d-t neutron from the triton burnup is called triton burnup neutron (TBN). Among the produced tritons, about 1% of tritons are burned-up and produce TBN. Two branches in d-d fusion reactions, 2.5 MeV neutron production branch and 1 MeV triton production branch, have nearly the same reaction cross-section, thus the birth rate of triton can be determined by 2.5 MeV neutron emission rate. Thus triton burnup ratio can be determined by d-d neutron and TBN measurements in deuterium plasma.
As the peak energy of the d-t fusion reaction cross-section is located at triton energy of about 170 keV, which is lower than the triton birth energy (1 MeV), the emission of TBN is affected by certain events that occur during the slowing down, as well as prompt loss. Thus the overall confinement characteristics of triton can be deduced from the triton burnup ratio.
For the confinement study of 1 MeV triton under various high performance plasma experiment in KSTAR, diagnostics for d-d neutron and TBN measurements are developed, and in order to analyze the measurements analyses codes are prepared. By using developed diagnostics triton burnup ratio is measured and analyzed based on the codes.
The diagnostics are composed of shot-integrated neutron yield diagnostics and time-resolved neutron emission rate diagnostics. The neutron yield of d-d neutron and TBN during the plasma discharge duration time is measured by neutron activation system (NAS). For d-d neutron yield measurement, indium sample has been used since 2011 campaign. For TBN yield measurement silicon sample which is selected based on the neutronics calculation is utilized. At the position of counting station, there is a background gamma-ray which is exactly the same energy with the gamma-ray radiated from the activated silicon sample. The background gamma-ray can interfere sample gamma counting and also evaluation of TBN yield. By using routinely available neutron flux monitor, the effect of the background gamma-ray on sample gamma counting is evaluated without separate measurement of the background gamma-ray. The activity of the silicon sample is evaluated by considering the effect of the background.
The time resolved d-d neutron and TBN emission rates are measured by using scintillation detectors. For simultaneous measurements of d-d neutron and TBN, organic scintillator is chosen. Two organic scintillators, stilbene and NE213 are operated independently. Each organic scintillator is optically coupled with a photo-multiplier tube (PMT). An irradiation test is carried out at accelerator based d-t neutron generator and appropriate PMT bias voltage level is determined which is adequate for analog input range of a digitizer. The digitizer can record the raw-waveform of triggered pulse during preset recording time window. The recorded data are offline processed then triggered time, induced charge and pulse shape information are extracted. Based on the charge comparison method, neutron and gamma-ray signals are discriminated. The discrimination performance is evaluated in terms of figure of merit and misclassification probability. For a total charge range of 0.6 V-ns or more, the probability of containing gamma-ray signal in the neutron branch is less than 0.1%.
For cross-check of TBN emission rate measurements from organic scintillators and for future high time resolution TBN diagnostics development, two scintillating fiber detectors are installed and tested. From its operation principle, the scintillating fiber detector can produce larger pulse signal only for the d-t neutron. Thus TBN signal can be discriminated by setting discrimination level in pulse height. From the test results on KSTAR plasma discharges whose triton birth rate and confinement characteristics are expected to be different, clearly different pulse height spectra are observed in the expected way. Based on this difference the discrimination level for TBN is determined.
A good linearity is found between TBN yield from NAS and shot-integrated TBN counts from each TBN emission rate detectors. Based on this linearity, TBN ranges in each detector is absolutely calibrated. There is also good linearity between d-d yield from NAS and shot-integrated d-d counts from the organic scintillators. Each organic scintillator d-d neutron range is absolutely calibrated based on the linearity.
In order to analyze measured triton burnup ratio, two codes are prepared. One is for prompt loss calculation and the other is for slowing down and burnup calculation. Prompt loss characteristics is evaluated by using full gyro-orbit following code Lorentz orbit (LORBIT) and plasma equilibrium data. A prompt loss rate on each flux surface is derived based on the statistically evaluated prompt loss rate on the 680 points in a poloidal cross-section. The calculations of slowing down and d-t fusion reaction of confined triton are carried out by using newly developed code based on previous studies in other devices. In this code, it is assumed that each triton is slowed down on their birth position via Coulomb interaction with background plasma. Additionally, in this code volume averaged effective diffusion coefficient can be evaluated in semi-empirical way.
The estimated triton burnup ratio using analyses tools and assumed plasma parameters increases as plasma current and slowing down time increase, as expected from the classical burnup theory. The measured triton burnup ratio from NAS also increases as plasma current increases. Within the same plasma current however, a deviation is observed. The deviation can be caused by combined effect among the different plasma current density profile, triton birth profile and MHD activities.
More detailed analyses are carried out by using time resolved measurement results on triton burnup ratio from the scintillation detector. The target plasma is the discharge #21695 where the Alfvรฉn instability control experiment was carried out. The analysis timing is 7.4 s when the instability is mitigated. At this timing, there is no strong amplitude MHD activity which can degrade the confinement of 1 MeV triton, therefore it is good to compare with the expected triton burnup ratio from the classical burnup theory. The plasma current of this discharge is 0.5 MA and the amount of prompt loss is expected to be large. The confined triton density at this timing is evaluated based on the confined fraction profile from LORBIT calculation, triton birth profile from TRANSP calculation, and measured d-d fusion neutron emission rate. Since d-t fusion reaction cross-section peak position is located lower than the birth energy of the triton, the calculation of the slowing down and burnup is carried out under the assumption that the plasma condition is retained for 0.6 s, which is the triton slowing down time in the plasma condition. The estimated triton burnup ratio based on the above process is consistent with the measurement within measurement error.
From the present study, the diagnostic systems are developed to measure the triton burnup ratio, and the codes for measured triton burnup analyses are prepared. In KSTAR deuterium plasma discharge, the triton burnup ratio is measured by using the developed diagnostics and analyzed using the prepared codes. The measured and estimated triton burnup ratio, under the quiescent and high prompt loss rate (~87%) plasma condition, are in a good agreement within measurement error. From this result, it might be inferred that the confinement characteristics of triton in KSTAR stable plasma condition can be explained through the classical theory.
The developed diagnostics can be routinely operated in various high performance experiments in KSTAR and database of triton burnup in various condition can be established. Triton confinement characteristics can be deduced from the database by using the analyses codes, and based on the deduced characteristics 3.5 MeV alpha behavior can be inferred.์ค์์-์ผ์ค์์ ํต์ตํฉ ํ๋ผ์ฆ๋ง์์์ 3.5 MeV ํต์ตํฉ ์ํ์
์ ๊ฐ๋ ํน์ฑ์ ์ดํด๋ ๋ด๋ถ๊ฐ์ด์ด ์ง๋ฐฐ์ ์ธ ์ฐ์ ํ๋ผ์ฆ๋ง (burning plasma) ๋ฌ์ฑ ๋ฐ, ์ง๊ณต์ฉ๊ธฐ์ ์์ ๋ฐฉ์ง ์ธก๋ฉด์์ ์ค์ํ๋ค. ์ค์์ ํต์ตํฉ ๋ฐ์์ผ๋ก ๋ฐ์ํ๋ 1 MeV ํธ๋ฆฌํค์ ๊ทธ ์ญํ์ ์ธ ํน์ฑ์ด 3.5 MeV ์ํ ์
์์ ์ ์ฌํ์ฌ, ์ํ ์
์์ ํน์ ํน์ฑ์ ๋ชจ์ฌํ๋ ํ
์คํธ ์
์๋ก์ ํจ๊ณผ์ ์ผ๋ก ํ์ฉ๋ ์ ์๋ค.
๋ฐ์ํ 1 MeV ํธ๋ฆฌํค ์ค ์ผ๋ถ๋ ๊ถค๋์ ํฌ๊ธฐ๊ฐ ์ปค์ ํ๋ผ์ฆ๋ง ๋ด๋ถ์ ๊ฐ๋ฌ์ง์ง ๋ชปํ ์ฑ ์ฆ๊ฐ์์ค(prompt loss) ๋๋ค. ์ฆ๊ฐ์์ค ๋์ง ์๊ณ ํ๋ผ์ฆ๋ง ๋ด๋ถ์ ๊ฐ๋ฌ์ง ํธ๋ฆฌํค์ ์ฃผ๋ณ ํ๋ผ์ฆ๋ง์์ ์ฟจ๋กฑ ์ถฉ๋์ ํตํด ์ฃผ๋ณ ํ๋ผ์ฆ๋ง์ ์ด์ ํํ์ํ์ ๋๋ฌํ๊ฒ ๋๋ค. ์ด์ ํํ์ํ์ ๋๋ฌํ๋ ๋์ค, ์ฃผ๋ณ ์ค์์ ํ๋ผ์ฆ๋ง์ ์ค์์(d)-์ผ์ค์์(t) ํต์ตํฉ ๋ฐ์์ ์ผ์ผํฌ ์ ์๊ณ , ์ด๋ฅผ ํตํด 14 MeV d-t ์ค์ฑ์(ํธ๋ฆฌํค ์ฐ์ ์ค์ฑ์)๊ฐ ๋ฐ์ ํ ์ ์๊ฒ ๋๋ค. ์์ฑ๋ ํธ๋ฆฌํค ์ค ์ฝ 1% ์ ๋๊ฐ ์ด์ ๊ฐ์ ๊ณผ์ ์ ํตํด ์ฐ์๋์ด ํธ๋ฆฌํค ์ฐ์ ์ค์ฑ์๋ฅผ ๋ฐ์์ํจ๋ค. ์ค์์ ํต์ตํฉ์ ๋ ๊ฐ์ง(branch)์ธ ํธ๋ฆฌํค ๋ฐ์ ๊ฐ์ง์ ์ค์ฑ์ ๋ฐ์ ๊ฐ์ง์ ๋ฐ์ ๋จ๋ฉด์ ์ด ๊ฑฐ์ ๊ฐ๊ธฐ ๋๋ฌธ์, ํธ๋ฆฌํค์ ์์ฑ๋์ d-d ํต์ตํฉ ์ค์ฑ์์ ์ธก์ ์ ํตํด ์ ์ถ ํ ์ ์๊ณ , ์ค์์ ํ๋ผ์ฆ๋ง์์์ d-d ํต์ตํฉ ์ค์ฑ์ ์ธก์ ๊ณผ ํธ๋ฆฌํค ์ฐ์ ์ค์ฑ์ ์ธก์ ์ ํตํด ํธ๋ฆฌํค ์ฐ์์จ์ ๊ตฌํ ์ ์๋ค.
ํธ๋ฆฌํค ์ฐ์ ์ค์ฑ์์ ๋ฐ์์, d-t ํต์ตํฉ ๋ฐ์๋จ๋ฉด์ ์ ํผํฌ ์ง์ ์๋์ง๊ฐ ํธ๋ฆฌํค ๋ฐ์ ์๋์ง์ธ 1 MeV ๋ณด๋ค ๋ฎ์ ์ฝ 170 keV์ ์์น ํจ์ ๋ฐ๋ผ, ์ฆ๊ฐ์์ค ๋ฟ๋ง ์๋๋ผ ์ด์ ํํ์ ์ด๋ฅด๋ ๊ณผ์ ์ ๋ฐ์ํ ์ฌ๋ฌ ์ํฉ์ ์ํด์๋ ์ํฅ์ ๋ฐ๊ฒ ๋๋ค. ๋ฐ๋ผ์ ํธ๋ฆฌํค ์ฐ์์จ ์ธก์ ์ ํตํด ํ์ฌ ํ๋ผ์ฆ๋ง์์์ ํธ๋ฆฌํค์ ๊ฐ๋ ๋ฐ ๊ฐ์ ํน์ฑ์ ๋ํ ์ ๋ณด๋ฅผ ์ป์ ์ ์๋ค.
๋ณธ ์ฐ๊ตฌ์์๋ KSTAR ์ฅ์น์์ ์งํ๋๋ ๋ค์ํ ๊ณ ์ฑ๋ฅ ํ๋ผ์ฆ๋ง ์๋๋ฆฌ์ค์์์ ํธ๋ฆฌํค ๊ฐ๋ ํน์ฑ ์ฐ๊ตฌ๋ฅผ ์ํ์ฌ, d-d ์ค์ฑ์ ๋ฐ ํธ๋ฆฌํค ์ฐ์ ์ค์ฑ์ ์ง๋จ์ ๊ฐ๋ฐํ์๊ณ , ํน์ ํ๋ผ์ฆ๋ง ์ํฉ์์์ ํธ๋ฆฌํค ์ฐ์ ํ์์ ํด์ํ๊ธฐ ์ํ ์ ์ฐ๋ชจ์ฌ ์ฝ๋๋ค์ ๋ง๋ จํ์๋ค. ๊ฐ๋ฐ๋ ์ค์ฑ์ ์ง๋จ๋ค์ ์ด์ฉํ์ฌ ์ค์ KSTAR ํ๋ผ์ฆ๋ง ์ํฉ์์ ํธ๋ฆฌํค ์ฐ์๋ฅ ์ ์ธก์ ํ๊ณ , ํด์ ๊ธฐ๋ฐ์ ์ด์ฉํ์ฌ ์ด๋ฅผ ํด์ํ์๋ค.
์ง๋จ์ ํฌ๊ฒ ์ค์ฑ์ ๋ฐ์ ์ ๋๋์ ์ธก์ ํ๋ ์ง๋จ๊ณผ ์๊ฐ์ ๋ฐ๋ฅธ ์ค์ฑ์ ๋ฐ์๋ฅ ์ ๋ณํ๋ฅผ ์ธก์ ํ๋ ์ง๋จ ๋๊ฐ์ง๋ก ๊ตฌ์ฑ ๋์ด์๋ค. ํ๋ผ์ฆ๋ง ๋ฐฉ์ ์๊ฐ ๋์ ๋ฐ์ํ ํธ๋ฆฌํค ์ฐ์ ์ค์ฑ์ ํน์ d-d ์ค์ฑ์์ ์ด๋์ ์ค์ฑ์ ๋ฐฉ์ฌํ ์ง๋จ์ ์ด์ฉํ์ฌ ์ธก์ ํ์๋ค. d-d ์ค์ฑ์ ๋ฐ์๋์ 2011๋
KSTAR ์บ ํ์ธ๋๋ถํฐ ์ธ๋ ์ํธ์ ํตํด ์ธก์ ํ์๋ค. ํธ๋ฆฌํค ์ฐ์ ์ค์ฑ์ ๋ฐ์๋ ์ธก์ ์ ๋ดํธ๋ก๋์ค ๊ณ์ฐ์ ํตํด KSTAR ์ํฉ์ ์ ํฉํ ์ํธ์ผ๋ก ํ์ธ๋ ์ค๋ฆฌ์ฝ ์ํธ์ ์ฌ์ฉํ์๋ค. ๊ฐ๋ง์ ๊ฒ์ถ๊ธฐ๊ฐ ์์นํ ์์ญ์์, ๋ฐฉ์ฌํ๋ ์ค๋ฆฌ์ฝ ์ํธ์์ ๋ฐ์ํ๋ ์ธก์ ๋์ ๊ฐ๋ง์ ๊ณผ ๊ฐ์ ์๋์ง์ ๋ฐฐ๊ฒฝ ๊ฐ๋ง์ ์ด ๋ฐ์ํ์ฌ, ์ํธ ๊ฐ๋ง์ ๊ฒ์ถ์ ๊ฐ์ญ์ ์ค ์ ์๊ณ , ์ด๋ ๋ํ ํธ๋ฆฌํค ์ฐ์ ์ค์ฑ์ ๋ฐ์๋ ๋์ถ์ ์ํฅ์ ๋ฏธ์น๊ฒ ๋๋ค. ์์ ์ด์ฉ๋๋ ์ค์ฑ์์ ๋ชจ๋ํฐ๋ฅผ ํ์ฉํ์ฌ ๋ฌธ์ ๊ฐ ๋๋ ๋ฐฐ๊ฒฝ ๊ฐ๋ง์ ์ ์ํฅ ์ ๋๋ฅผ ๋ฐฐ๊ฒฝ ๊ฐ๋ง์ ์ ๋ณ๋ ์ธก์ ์์ด ํ๊ฐํ๋ ๋ฐฉ๋ฒ์ ์ฌ์ฉํ์ฌ ์ค๋ฆฌ์ฝ ์ํธ์ ๋ฐฉ์ฌํ๋ ์ธก์ ์ด ์งํ๋์๋ค.
ํธ๋ฆฌํค ์ฐ์ ์ค์ฑ์ ๋ฐ d-d ํต์ตํฉ ์ค์ฑ์์ ๋ฐ์๋ฅ ์ธก์ ์ ์ฌ๊ด๊ฒ์ถ๊ธฐ๋ค์ ์ด์ฉํด ์ด๋ฃจ์ด์ก๋ค. ํธ๋ฆฌํค ์ฐ์ ์ค์ฑ์์ d-d ํต์ตํฉ ์ค์ฑ์์ ๋์ ์ธก์ ์ ์ํด ์ ๊ธฐ์ฌ๊ด์ฒด๋ฅผ ์ฌ์ฉํ์๋ค. ์คํธ๋ฒค๊ณผ NE213 ๋๊ฐ์ ์ ๊ธฐ์ฌ๊ด์ฒด๊ฐ ๋
๋ฆฝ์ ์ผ๋ก ์ด์ฉ ๋์๋ค. ๊ฐ ์ ๊ธฐ์ฌ๊ด์ฒด์๋ ๊ด์ ์์ฆ๋ฐฐ๊ธฐ๊ฐ ๊ดํ์ ์ผ๋ก ์ฐ๊ฒฐ๋์ด์๋ค. ๊ฐ์๊ธฐ ๊ธฐ๋ฐ d-t ์ค์ฑ์ ๋ฐ์์ฅ์น์์์ ํ
์คํธ ๊ฒฐ๊ณผ๋ฅผ ํตํด, ํ์ฌ ์ฌ์ฉํ๋ ๋์งํ์ด์ ์ ์๋ ๋ก๊ทธ ์
๋ ฅ ๋ฒ์์ d-t ์ค์ฑ์ ์ ํธ๊ฐ ์ ์ ํ๊ฒ ๋ค์ด์ฌ ์ ์๋๋ก ๊ด์ ์์ฆ๋ฐฐ๊ธฐ ์ด๋๋ฅ ๊ฐ์ ๊ฒฐ์ ํ์๋ค. ๋์งํ์ด์ ๋ ๊ฐ ํธ๋ฆฌ๊ฑฐ๋ ํ์ค๋ค์ ํํ์ ์ ์ฅํ ์ ์๋ค. ์ ์ฅ๋ ํํ ์ ๋ณด์์ ํ-์ฒ๋ฆฌ๋ฅผ ํตํด ํธ๋ฆฌ๊ฑฐ ์๊ฐ, ๋ฐ์ํ ์ ํ, ํ์ค์ ๋ชจ์ ์ ๋ณด๊ฐ ๋์ถ๋๋ค. ์ ํ ๋น๊ต ๋ฐฉ๋ฒ์ ํตํด ์ค์ฑ์์ ๊ฐ๋ง์ ์ ํธ๋ฅผ ๊ตฌ๋ณํ์๊ณ , ๊ทธ ๊ตฌ๋ณ ์ฑ๋ฅ์ ์ฑ๋ฅ์ง์(figure of merit)์ ์ค-๋ถ๋ฅ ํ๋ฅ ์ ํตํด ํ๊ฐ๋์๋ค. ์ ์ฒด์ ํ 0.6 V-ns ์ด์์ ๋ฒ์์์ ์ค์ฑ์ ์ ํธ ์์ญ์ ๊ฐ๋ง์ ์ ํธ๊ฐ ํฌํจ๋์ด ์์ ํ๋ฅ ์ 0.1% ๋ฏธ๋ง์ผ๋ก ํ์ธ ๋์๋ค.
๋ ์ฌ๊ด๊ฒ์ถ๊ธฐ์ ๋๋ถ์ด ํธ๋ฆฌํค ์ฐ์ ์ค์ฑ์ ์ธก์ ์ ๊ต์ฐจ ํ์ธ ๋ชฉ์ ๋ฐ ํฅํ ๊ณ -์๋ถํด๋ฅ ์ธก์ ์ค๋น์ ์ผํ์ผ๋ก ์ฌ๊ดํ์ด๋ฒ ๊ฒ์ถ๊ธฐ๊ฐ ์ค์น, ์ด์ฉ ๋์๋ค. ์ฌ๊ดํ์ด๋ฒ ๊ฒ์ถ๊ธฐ๋ ํธ๋ฆฌํค ์ฐ์ ์ค์ฑ์์ ๋ํด์ ํนํ ๋์ ํ์ค ์ ํธ๋ฅผ ๋ฐ์์์ผ d-d ์ค์ฑ์ ๋ฐ ๊ฐ๋ง์ ์ ์ํ ์ ํธ์ ๋ถ๋ฆฌ ๊ฐ๋ฅํ๋ค. ํธ๋ฆฌํค ์์ฑ๋์ด ์ ์ด ํธ๋ฆฌํค ์ฐ์ ์ค์ฑ์์ ๋ฐ์์ด ๊ฑฐ์ ์์ ๊ฒ์ผ๋ก ์์๋๋ ํ๋ผ์ฆ๋ง ์ํฉ๊ณผ, ํธ๋ฆฌํค ์์ฑ๋์ด ๋ง๊ณ ๊ฐ๋ ํน์ฑ์ด ์ข์ ํธ๋ฆฌํค ์ฐ์ ์ค์ฑ์ ๋ฐ์ ๋ํ ๋ง์ด ๋ฐ์ํ ๊ฒ์ผ๋ก ์์๋๋ ํ๋ผ์ฆ๋ง ์ํฉ์์, ํ์ค ํ๊ณ ์คํํธ๋ผ ์์ ์์๋๋ ๋ฐฉํฅ์ผ๋ก์ ๋๋ ทํ ์ฐจ์ด๊ฐ ํ์ธ ๋์๊ณ , ์ด๋ฅผ ํตํด ํธ๋ฆฌํค ์ฐ์ ์ค์ฑ์ ์ธก์ ์ ์ํ ์ ํธ ๋ถ๋ฆฌ ๋ ๋ฒจ์ด ์ค์ ๋์๋ค.
๋ ์ ๊ธฐ์ฌ๊ด์ฒด ๋ฐ ์ฌ๊ดํ์ด๋ฒ ๊ฒ์ถ๊ธฐ๋ก ์ธก์ ํ ๋ฐฉ์ ์๊ฐ๋์ ๋์ ๋ ํธ๋ฆฌํค ์ฐ์ ์ค์ฑ์ ์ ํธ์, ์ค์ฑ์ ๋ฐฉ์ฌํ ์ง๋จ์ ํตํด ์ธก์ ํ ํธ๋ฆฌํค ์ฐ์ ์ค์ฑ์ ๋ฐ์๋ ์ฌ์ด์ ์ ํ์ฑ์ด ํ์ธ๋์๊ณ , ์ด๋ฅผ ํตํด ๊ฐ ์ฌ๊ด๊ฒ์ถ๊ธฐ๋ค์ด ์ ๋ ๊ต์ ๋์๋ค. ์ค์ฑ์ ๋ฐฉ์ฌํ ์ง๋จ์ผ๋ก ๊ตฌํ d-d ์ค์ฑ์ ๋ฐ์๋๊ณผ ์ ๊ธฐ์ฌ๊ด์ฒด๋ก ์ธก์ ํ ๋ฐฉ์ ์๊ฐ๋์ ๋์ ๋ d-d ์ค์ฑ์ ์ ํธ์ฌ์ด์๋ ์ ํ์ฑ์ด ํ์ธ ๋์๊ณ , ์ด๋ฅผ ์ด์ฉํ์ฌ ์ ๊ธฐ์ฌ๊ด์ฒด ๊ฒ์ถ๊ธฐ์ d-d ์ค์ฑ์ ์ธก์ ์์ญ์ด ์ ๋ ๊ต์ ๋์๋ค.
ํธ๋ฆฌํค ์ฐ์ ํ์์ ํด์ํ๊ธฐ ์ํ ํด๋ก ํธ๋ฆฌํค์ ์ฆ๊ฐ์์ค์ ๊ณ์ฐํ๋ ์ฝ๋์ ํธ๋ฆฌํค์ ํ๋ผ์ฆ๋ง ๋ด์์์ ๊ฐ์๊ณผ d-t ํต์ตํฉ ๋ฐ์์ ๊ณ์ฐํ๋ ์ฝ๋๊ฐ ๋ง๋ จ๋์๋ค. ์ฆ๊ฐ์์ค์ ํธ๋ฆฌํค์ ์๊ธฐ์ฅ๋ด์์์ ์์ด๋ก ๋ชจ์
์ ์ ๋ถ ๋ฐ๋ผ๊ฐ๋ Lorentz Orbit ์ฝ๋์ ํ๋ผ์ฆ๋ง ํํ์ ์ด์ฉํ์ฌ ๊ณ์ฐํ์๋ค. ๊ฐ ์์ํ๋ฉด์์์ ์ฆ๊ฐ์์ค๋ฅ ์, ํ ํด๋ก์ด๋ฌ ํ๋ฉด ๋ด 680๊ฐ ์์น์์ ํต๊ณ์ ๋ฐฉ๋ฒ์ผ๋ก ๊ณ์ฐ๋ ์ฆ๊ฐ์์ค๋ฅ ์ ๊ธฐ๋ฐ์ผ๋ก ๊ฒฐ์ ๋์๋ค. ๊ฐ๋ฌ์ง ํธ๋ฆฌํค์ ๊ฐ์๊ณผ d-t ํต์ตํฉ ๋ฐ์์ ๊ณ์ฐ์, ๊ธฐ์กด์ ๋ค๋ฅธ ์ฅ์น๋ค์์ ํ์ฉ๋๋ ์ฝ๋๋ค์ ๊ธฐ๋ฐ์ผ๋ก ์๋ก ๊ฐ๋ฐํ ์ฝ๋๋ฅผ ํตํด ์งํ๋์๋ค. ์ด ์ฝ๋์์๋ ๊ธฐ๋ณธ์ ์ผ๋ก ๊ฐ ํธ๋ฆฌํค๋ค์ด ์์ฑ๋ ์์ํ๋ฉด ์์น์์ ๊ฐ์ ๋๋ค๊ณ ๊ฐ์ ํ๊ณ , ์ฃผ๋ณ ํ๋ผ์ฆ๋ง์์ ์ฟจ๋กฑ ์ํธ์์ฉ์ ํตํด ๊ฐ์๋๋ ์ํฉ์ ๋ชจ์ฌํ๋ค. ๋ํ ์ด ์ฝ๋์์๋ ๋ฐ๊ฒฝํ์ ์ธ (semi-empirical) ๋ฐฉ๋ฒ์ผ๋ก ๋ถํผํ๊ท ์ ํจํ์ฐ๊ณ์๋ฅผ ๊ตฌํ์ฌ ๊ณ ์-ํธ๋ฆฌํค์ ๊ฐ๋ ์๊ฐ์ด ์ ํํ ๊ฒฝ์ฐ์ ๋ํด์ ๋ชจ์ฌ ํ ์ ์๋ค.
ํธ๋ฆฌํค ์ฐ์ ํด์ ํด๊ณผ ๊ฐ์ ํ ํ๋ผ์ฆ๋ง ํ๋ผ๋ฏธํฐ๋ฅผ ํ์ฉํ์ฌ ๊ณ์ฐํ ํธ๋ฆฌํค ์ฐ์์จ์, ๊ณ ์ ์ด๋ก ์์ ์์ธกํ๋ ๋ฐ์ ๊ฐ์ด, ํ๋ผ์ฆ๋ง ์ ๋ฅ๊ฐ ์ฆ๊ฐํ ์๋ก ๊ทธ๋ฆฌ๊ณ ํธ๋ฆฌํค์ ๊ฐ์์๊ฐ์ด ๊ธธ์ด์ง์๋ก ์ฆ๊ฐํ๋ ๊ฒฝํฅ์ฑ์ ๋ณด์ฌ์ฃผ์๋ค. ์ค์ฑ์ ๋ฐฉ์ฌํ ์ง๋จ์ ์ด์ฉํ์ฌ ์ธก์ ํ ๊ฒฐ๊ณผ์์๋ ํ๋ผ์ฆ๋ง ์ ๋ฅ๊ฐ ์ฆ๊ฐํ ์๋ก ํธ๋ฆฌํค ์ฐ์์จ์ด ์ฆ๊ฐํ๋ ๋ชจ์ต์ ๋ณด์ฌ์ฃผ์๋ค. ํ์ง๋ง ๊ฐ์ ํ๋ผ์ฆ๋ง ์ ๋ฅ ์ํฉ์์๋ ํธ๋ฆฌํค ์ฐ์์จ์ ์์ด ์ผ์ ์ ๋ ํธ์ฐจ๋ฅผ ๊ฐ๋ ๊ฒ์ด ํ์ธ๋์๋ค. ์ด๋ ๊ฐ์ ํ๋ผ์ฆ๋ง ์ ๋ฅ ์ํฉ์์๋ ํ๋ผ์ฆ๋ง ์ ๋ฅ ๋ฐ๋ ๋ฐ ํธ๋ฆฌํค ๋ฐ์๋ถํฌ๊ฐ ๋ฌ๋ผ, ์ฆ๊ฐ์์ค ์ ๋๊ฐ ํฌ๊ฒ ๋ค๋ฅผ ์ ์์๊ณผ ์ถ๊ฐ์ ์ธ ์๊ธฐ์ ์ฒด์ญํ์ ํ์์ด ํฌํจ ๋ ์ ์์์ ์ง๋ฐฐ์ ์ผ๋ก ๊ธฐ์ธํ๋ ๊ฒ์ผ๋ก ์์ธก๋๋ค.
์ฌ๊ด๊ฒ์ถ๊ธฐ๋ฅผ ์ด์ฉํ ์๋ถํด ํธ๋ฆฌํค ์ฐ์์จ ์ธก์ ๊ฒฐ๊ณผ์ ๋ถ์ํ๊ณ ์ ํ๋ ํ์ด๋ฐ์์์ ํ๋ผ์ฆ๋ง ํ๋ผ๋ฏธํฐ๋ค์ ์ด์ฉํ์ฌ ์ข ๋ ์์ธํ ํธ๋ฆฌํค ์ฐ์ ํด์์ ์งํํ์๋ค. ๋์ ํ๋ผ์ฆ๋ง๋ ์๋ฒค (Alfvรฉn) ๋ถ์์ ์ฑ ์ ์ด ์คํ์ด ์งํ๋ ํ๋ผ์ฆ๋ง ๋ฐฉ์ #21695๋ฒ์ผ๋ก, ํด์ํ๋ ์์ ์ ๋ถ์์ ์ฑ์ด ์ ์ด๋ 7.4 ์ด ์์ ์ด๋ค. ์ด ์์ ์์๋ 1 MeV ํธ๋ฆฌํค์ ๊ฐ๋ ํน์ฑ์ ์
ํ์ํค๋ ๊ฐํ ๋ถ์์ ์ฑ์ด ์๋ ์ํฉ์ผ๋ก, ๊ณ ์ ์ด๋ก ์ ๊ธฐ๋ฐ์ผ๋ก ๋์ถํ ํธ๋ฆฌํค ์ฐ์์จ ์ถ์ ์น์ ๋น๊ตํ๊ธฐ ์ ์ ํ ํ๋ผ์ฆ๋ง ์ํฉ์ด๋ค. ์ด ๋ฐฉ์ ์ ํ๋ผ์ฆ๋ง ์ ๋ฅ๋ 0.5 MA๋ก ์ฆ๊ฐ์์ค๋ฅ ์ด ํด ๊ฒ์ผ๋ก ์์๋๋ค. ํด๋น ์์ ์์์ ํ๋ผ์ฆ๋ง ํํ ๋ฐ์ดํฐ์ LORBIT ์ฝ๋๋ฅผ ์ด์ฉํ์ฌ ๊ณ์ฐํ ํธ๋ฆฌํค ๊ฐ๋ ๋น์จ ๋ถํฌ์, TRANSP์ผ๋ก ๊ณ์ฐ๋ ํธ๋ฆฌํค ์์ฑ ๋ถํฌ, ๊ทธ๋ฆฌ๊ณ ์ธก์ ๋ d-d ์ค์ฑ์ ๋ฐ์๋ฅ ์ ์ด์ฉํ์ฌ ์ด ์์ ์์ ํ๋ผ์ฆ๋ง์ ๊ฐ๋ฌ์ง ํธ๋ฆฌํค์ ๋ฐ๋๋ฅผ ๊ณ์ฐํ์๋ค. ํธ๋ฆฌํค ์์ฑ ์งํ ์๋์ง๋ณด๋ค d-t ํต์ตํฉ ๋ฐ์๋จ๋ฉด์ ์ ํผํฌ ์๋์ง ์์น๊ฐ ๋ ๋ฎ์ ๊ณณ์ ์์นํจ์ ๋ฐ๋ผ, ์ด ํ๋ผ์ฆ๋ง์์์ ํธ๋ฆฌํค ๊ฐ์์๊ฐ์ธ 0.6 ์ด ๋์ ๊ฐ์ ํ๋ผ์ฆ๋ง๊ฐ ์ ์ง ๋์๋ค๋ ๊ฐ์ ์ผ๋ก ๊ณ์ฐ์ด ์งํ๋์๋ค. ์ด๋ฌํ ๊ณผ์ ์ ํตํด ๊ณ์ฐํ ํธ๋ฆฌํค ์ฐ์์จ์ ์ธก์ ์น์ ์ธก์ ์ค์ฐจ ๋ฒ์๋ด์์ ์ผ์นํ๋ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์ฌ์ฃผ์๋ค.
๋ณธ ์ฐ๊ตฌ๋ฅผ ํตํด KSTAR ์ฅ์น์์ ํธ๋ฆฌํค ์ฐ์์จ์ ์๊ฐ์ ๋ฐ๋ฅธ ๋ณํ๋ฅผ ์ธก์ ํ ์ ์๋ ์ง๋จ ์์คํ
์ ๊ฐ๋ฐํ์๊ณ , ํธ๋ฆฌํค ์ฐ์๋ฅผ ํด์ํ ์ ์๋ ์ฝ๋๋ค์ ๋ง๋ จํ์ฌ ํธ๋ฆฌํค ์ฐ์ ํด์์ ๊ธฐํ์ ๋ง๋ จํ์๋ค. ๊ฐ๋ฐ๋ ์ง๋จ์ ์ค์ KSTAR ํ๋ผ์ฆ๋ง ๋ฐฉ์ ์ํฉ์์ ์ด์ฉํ์ฌ ํธ๋ฆฌํค ์ฐ์์จ์ ์๊ฐ์ ๋ฐ๋ฅธ ๋ณํ๋ฅผ ์ธก์ ํ์๊ณ , ํด์ ํด๋ค์ ์ด์ฉํ์ฌ ์ธก์ ๊ฒฐ๊ณผ๋ฅผ ํด์ํ์๋ค. ๊ฐํ ๋ถ์์ ์ฑ์ด ๋ฐ์ํ์ง ์์ ์์ ์ ์ธ ์ํฉ์ด์ง๋ง ์ฆ๊ฐ์์ค๋ฅ ์ด ์ฝ 87%๋ก ๋์ ํ๋ผ์ฆ๋ง ์์ ์์, ๊ฐ๋ฐ๋ ์ง๋จ์ ํตํด ์ธก์ ํ ํธ๋ฆฌํค ์ฐ์์จ๊ณผ ์ฝ๋๋ค์ ํตํด ์ถ์ฐํ ๊ฐ์ด ์ธก์ ์ค์ฐจ ๋ด์์ ์ ์ผ์นํ๋ ๋ชจ์ต์ ํ์ธํ์๋ค. ์ด๋ฅผ ํตํด ๋ค๋ฅธ ์ฅ์น๋ค์์ ๋ณด์ฌ์ฃผ์๋ ๊ฒฐ๊ณผ์ ๊ฐ์ด ์์ ์ ์ธ ํ๋ผ์ฆ๋ง ์ํฉ์์์ ํธ๋ฆฌํค์ ๊ฐ๋ ํน์ฑ์ด ๊ณ ์ ์ด๋ก ์ ํตํด์ ์ค๋ช
๋ ์ ์์์ ์ ์ถ ํ ์ ์๋ค.
ํ์ฌ KSTAR์์๋ ๋ค์ํ ๊ณ ์ฑ๋ฅ ํ๋ผ์ฆ๋ง ์คํ๋ค์ด ์งํ๋๊ณ ์๋ค. ์ด๋ฌํ ์คํ๋ค์์ ๋ณธ ์ฐ๊ตฌ๋ฅผ ํตํด ๊ฐ๋ฐํ ์ง๋จ๊ณผ ํด์ ์ฝ๋๋ค์ ํ์ฉํจ์ผ๋ก์จ 1 MeV ์๋์ง๋ฅผ ๊ฐ๋ ํธ๋ฆฌํค์ ๊ฐ๋ ํน์ฑ์ ๋ํ ๋ฐ์ดํฐ ๋ฒ ์ด์ค๋ฅผ ์ ๋ฆฝํด ๋๊ฐ ์ ์๊ณ , ์ด ๋ฐ์ดํฐ๋ฒ ์ด์ค๋ ๊ฐ ์ํฉ์์์ 3.5 MeV ์ํ์
์ ๊ฑฐ๋ ์ ์ถ์ ์ ์ฉํ๊ฒ ํ์ฉ๋ ์ ์์ ๊ฒ์ผ๋ก ๊ธฐ๋ํ๋ค.Chapter 1. Introduction 1
1.1. 3.5 MeV alpha from d-t fusion reaction 1
1.2. 1 MeV triton from d-d fusion reaction 2
1.3. Motivation 8
1.4. Objective and approach 9
Chapter 2. Fusion neutron diagnostics 11
2.1. Neutron activation system (NAS) 11
2.1.1. Operation principle 11
2.1.2. Experimental setup 14
2.1.3. Neutron yield evaluation 18
2.1.3.1. KSTAR neutron transport model 18
2.1.3.2. d-d neutron yield 19
2.1.3.3. Triton burnup neutron yield 22
2.2. Scintillation detectors 30
2.2.1. Overview of the system 30
2.2.2. Organic scintillators: NE213 and stilbene 32
2.2.2.1. Operation principle 32
2.2.2.2. Experimental setup 34
2.2.2.2.1. Scintillator and photo-detector 34
2.2.2.2.2. Digitizer 38
2.2.2.2.3. Radiation shielding and installation in KSTAR 42
2.2.2.3. Operation stability and discrimination level setting 53
2.2.3. Scintillating fiber detector 72
Chapter 3. Triton burnup analyses tools 80
3.1. Prompt loss calculation 80
3.1.1. Lorentz Orbit code 80
3.1.2. Confined fraction calculation result 82
3.2. Slowing down and burnup calculation 89
3.2.1. Governing equation and calculation scheme 89
3.2.2. Ad-hoc diffusive model 94
3.2.3. Slowing down and burnup calculation result 97
Chapter 4. Analyses of triton burnup in KSTAR 99
4.1. Analyses of NAS measured result 99
4.2. Analyses of the scintillation detector result 103
Chapter 5. Summary and conclusion 112
Bibliography 115
๊ตญ ๋ฌธ ์ด ๋ก 124Docto
์ปค๋จผ๋ก์ ํ์ ๋ฒ ๋ฐฉ๋ฒ๋ก ์ ๋ํ ์์์ ๊ดํ ์ฐ๊ตฌ
ํ์๋
ผ๋ฌธ (์์ฌ)-- ์์ธ๋ํ๊ต ๋ํ์ : ๋ฒํ๊ณผ, 2013. 8. ๋ฐ์ ํ.
๋ฒํ์ ์์ด์ ๋น๊ต๋ฒ ์ฐ๊ตฌ์ ์ค์์ฑ์ ์ผ๋ฐ์ ์ผ๋ก ์ธ์ ๋๊ณ ์๋ ๋ฐ ๋นํ์ฌ ์ฐ๋ฆฌ ํ์ ๋ฒํ๊ณ์์ ๋ฏธ๊ตญํ์ ๋ฒ์ ๊ดํ ์ฐ๊ตฌ๋ ์์ง๊น์ง๋ ๋ถ์กฑํ๋ค.
๋ฏธ๊ตญํ์ ๋ฒ์ ๋ํ ๋น๊ต๋ฒ์ ์ฐ๊ตฌ์ ๊ด์ ์ด ์ด๋ ํด์ผ ํ ๊ฒ์ธ์ง๊ฐ ๋ฌธ์ ๋๋๋ฐ, ๊ฐ๊ฐ ๋ฒ์ ๋์ ๋ํ ๋น๊ต ๋ฟ ์๋๋ผ ๋ฒ์ ๋ ๊ทผ์ ์ ์๋ฆฌ ์ก์ ์ฌ๊ณ ๋ฐฉ์๊ณผ ์ถ๋ก ๋ฐฉ์์ ๋ํ ์ฐ๊ตฌ๊ฐ ๋น๊ต๋ฒ ์ฐ๊ตฌ์ ๋ชฉ์ ์ ๋ฌ์ฑํ๋ ๋ฐ ํ์์ ์ด๋ค. ๋ฐฉ๋ฒ๋ก ์ ์ฐจ์ด์ ๋ํ ๋ถ์์ ํตํด ์ฐ๋ฆฌ์ ๋ฐฉ๋ฒ๋ก ๊ณผ ์ถ๋ก ๋ฐฉ์์ ๋ด์ฉ์ ๋ช
ํํ ์ ์ ์๊ณ , ๋ค๋ฅธ ๋ฒ์ ํต์ ๋ํ์ฌ ๊ทธ ๋ฒ์ ํต์ ์
์ฅ์ ์์ ํ๋จํ ์ ์๊ฒ ๋๊ธฐ ๋๋ฌธ์ด๋ค.
์ปค๋จผ๋ก ๋ฒ์ ํต์ ์ค๋ซ๋์ ์ฐ๋ฆฌ์๋ ๋ฌด๊ดํ๊ณ ์ด์ง์ ์ธ ์์๋ก ์ทจ๊ธ๋์ด ์๋ค. ๊ทธ ์ด์ ์ค ํ๋๋ ์ฑ๋ฌธ๋ฒ ์์ฃผ์ ๋ฒ์ง์๊ฐ ๊ทผ๋ณธ์ ์ผ๋ก ์ฌ๋ก๋ฒ, ํ๋ก๋ฒ ์์ฃผ์ ์ปค๋จผ๋ก ์ง์์๋ ๋ง์ง ์๋ค๊ณ ์๊ฐ๋์๊ธฐ ๋๋ฌธ์ด๋ค.
๊ทธ๋ฐ๋ฐ ๋ณธ๋ฌธ์์ ์ธ์ฉํ ๊ฑด์ถ์ ๊ณ ์ ๊ดํ ๋๋ฒ์ ํ๊ฒฐ์ ๊ทธ ๊ฒฐ๋ก ์ด ๋ฒ์กฐ๋ฌธ๊ณผ ํ์ ๋ฒ ๋๊ทธ๋งํฑ์์ ๋ฐ๋ก ๋์ถํ๊ธฐ ์ด๋ ค์ด ๋ฐ๋ค๊ฐ, ์ธ๊ฒฌ์์ ์ปค๋จผ๋ก์ ์ ๋น์ ๋ฐฉ๋ฒ๋ก ๊ณผ ์ ์ฌํด ๋ณด์ธ๋ค. ์์ฆ ๋ฐ๊ฒฌ๋๋ ์ด๋ฌํ ์ข
๋ฅ์ ํ๊ฒฐ๋ฌธ๋ค๊ณผ ์ฌ๊ณ ๋ฐฉ์์ ์ปค๋จผ๋ก๋ฅผ ๋ ์ด์ ๋จ์ ์ผ๋ก ์ทจ๊ธํด์๋ ์ ๋๋ค๋ ์ฌ์ค์ ๋ณด์ฌ์ค๋ค. ์ด๋ฌํ ์ถ๋ก ์ ์ง์งํ๊ธฐ ์ํด์๋ , ๋ฐ๋ฐํ๊ธฐ ์ํด์๋ ์ปค๋จผ๋ก์ ๋ํ ์ฐ๊ตฌ๊ฐ ํ์ํด์ก๋ค.
์ปค๋จผ๋ก๋ ๊ทธ ๊ฐ๋
ํ์ ๋ถํฐ ์ฝ์ง ์๋ค. ๊ทธ๋์ ๋จผ์ ๋
ผ์๋ฅผ ์ํ์ฌ ํ์ํ ๋ฒ์์์ ์ปค๋จผ๋ก ์ผ๋ฐ์ ๋ํ์ฌ ๊ฐ๋จํ ๊ฒํ ํ๋ค.
๋ค์์ผ๋ก ๋ฏธ๊ตญํ์ ๋ฒ ํ์ฑ์ฌ๋ ์ปค๋จผ๋ก๊ฐ ํ์ ๋ฒ์ ๋ํ์ฌ ๊ฐ์ง๋ ์์์ ๋ํ์ฌ ์ฐ๊ตฌํด๋ณผ ์ ์๋ ์ฅ์ ์ ๊ณตํ๋ค. ์ฐ์
ํ๋ก ์ปค๋จผ๋ก์ ํ์ ๋ฒ์ด ์ ๋๋ก ์ฒซ๋๋ฉด์ ํ ์๊ธฐ์ด๊ธฐ ๋๋ฌธ์ด๋ค. ๋๊ท๋ชจ์ ํ์ ๋ฒ๋ฅ ์ด ๋ค์ด์ค๋ฉด์ ๊ธฐ์กด์ ์ ๋ก๋ฒ ์์ฃผ๋ก ๋์ด ์๋ ์ปค๋จผ๋ก ์ฒด์ ๊ฐ ์ด๋ ํ ๋ฐ์์ ๋ณด์ด๊ณ ์์๊ฐ ์ด๋ป๊ฒ ๊ด๊ณ ๋งบ์๋์ง๋ฅผ ์ดํด๋ณผ ํ์๊ฐ ์๋ค. ๊ทธ์ ๊ดํ ์ฐ๊ตฌ๋ฐฉ๋ฒ์ผ๋ก์ ์ด ๋
ผ๋ฌธ์์๋ ๋ฏธ๊ตญ ํ์ ๋ฒ์ ํ์ฑ๊ณผ์ ์ ์ญ์ฌ์ ์ธ ์์๋ก ์์ ํ๊ธฐ ๋ณด๋ค๋ ์ค์ํ๋ค๊ณ ์๊ฐ๋๋ ์ฐ๋ฐฉ๋๋ฒ์์ ์ธ ํ๊ฒฐ์ ์ ํํ์ฌ ๊ทธ ๋ด์ฉ์ ์์ธํ ์ดํด๋ณธ๋ค.
์ด์์ ๋
ผ์๋ ์ฐ์ ์ฐ๋ฆฌ๊ฐ ์ปค๋จผ๋ก์ ์ ๊ทผํ๋ ๋ฐฉ์์ ์์ฌํ๋ค. ์ฒซ์งธ๋ ์ญ์ฌ์ ๋ฐฉ์, ๋ ๋ฒ์งธ๋ ๋ฐฉ๋ฒ๋ก ์ ์ธ ๋ฐฉ์, ์ธ ๋ฒ์งธ๋, ์ฒ ํ์ ๋ฐฉ์์ด๋ค.
์ฐ๋ฆฌ์ ๊ฒฝ์ฐ๋ ์ญ์ฌ์ ์ธ ๋ถ์์ ์ํํ ํ๋ ๊ฒฝ์ฐ๊ฐ ๋ง์ง๋ง, ๋จ์ ์์ด ๋จ์ผํ ๋ฒ์ ํต์ผ๋ก ๋ฐ์ ํ ์ปค๋จผ๋ก์ ๊ฒฝ์ฐ ์ญ์ฌ์ ๊ด์ ์ด ๊ธฐ๋ณธ์ ์ผ๋ก ์ค์ํ๋ค.
์ปค๋จผ๋ก์ ๋ํ์ ์ธ ๋ฐฉ๋ฒ๋ก ์ ์ ๋น์ ์ฌ๊ณ ์ด๋ค. ์ด๋ ๊ธฐ๋ณธ์ ์ผ๋ก ๋นํ์์ฑ์ ๋ ๊ธฐ ๋๋ฌธ์ ์ฐ์ญ๋
ผ์ฆ๊ณผ ๊ฒฐํฉํ๊ฑฐ๋ ์ด๋ฅผ ํฌํจํ๋ ๊ฒ์ด ๊ฐ๋ฅํ์ฌ, ์ฐ๋ฆฌ์ ๊ฐ์ ๋๋ฅ๋ฒ๊ณ์์๋ ๋ฒ๋ฅ ๊ณผ ๋๊ทธ๋งํฑ์ ์ํ ๋
ผ์ฆ์ ์ ๊ฐํ๋ฉด์๋ ์ผ๋ง๋ ์ง ์ ๋น์ ์ฌ๊ณ ๋ฅผ ์์ฉํ ์ ์๋ค.
์ฒ ํ์ ์ผ๋ก๋, ์ปค๋จผ๋ก๋ โ ์ ๋ช
๋ก ์ , โก ๊ท๋ฒ์ฃผ์์ , โข ์์ฐ๋ฒ์ ์ธก๋ฉด์ ๋ฐฉ๋ฒ๋ก ์ผ๋ก ์ดํด๋ณผ ์ ์๋ค. ๊ทผ๋ณธ์ ์ผ๋ก ์ปค๋จผ๋ก ๋ฐฉ๋ฒ๋ก ์ ๋ด๊ฒจ์๋ ์ฒ ํ์ ๋ฟ๋ฆฌ์ ๋ํ ์ง์ ์ด๋ผ๋ ์ ์ ๊ธฐ์ตํ ํ์๊ฐ ์๋ค. ์ด๋ฌํ ์์ค์ ๊น์ด ์๋ ์ดํด๊ฐ ์์ด์ผ ์ปค๋จผ๋ก๋ฅผ ์ฐ๋ฆฌ ์
์ฅ์์๊ฐ ์๋ ์ปค๋จผ๋ก ์
์ฅ์์ ์์ ํ์
ํ ์ ์๋ค๊ณ ํ ๊ฒ์ด๋ค.
๋ํ ๋ฏธ๊ตญ ํ์ ๋ฒ ํ์ฑ๊ธฐ์ ํ๊ฒฐ์ ๋ถ์์ด ์๋ ค์ฃผ๋ ์ ์ ์๋์ ๋ฒ์ ์ ์ ๋ง๋ ํ๊ฒฐ์ด ์ผ๋ง๋ ์ด๋ ค์ด ๊ฒ์ธ๊ฐ ํ๋ ๊ฒ์ด๋ค. ์ด ํ๊ฒฐ๋ค์ ๊ณตํต์ ์ด๋ผ๋ฉด ์ฌ๋ฒ์ ์ฐ์์ ๋ํ ์ง๋์น ํ์ ์์ ๋น๋กฏ๋ ์์์ด๋ค. ํ์ฌ์ ์์๋ ๊ฒ์ด ๊ณ ์์ ์ธ ํ๋ง์ด๋ ๋ถ์ฑ์ค์ ๊ฒฝ์ฐ์๋ง ๋ฐ์ํ๋ ๊ฒ์ด ์๋๊ณ , ํ์ฌ๊ฐ ๋ง์ ๋
ธ๋ ฅ์ ๊ธฐ์ธ์ฌ๋ ๊ฒฐ๊ตญ์ ์ญ์ฌ์ ์ผ๋ก๋ ์์์ ์ด๋ผ๋ ๋ถ๋ช
์๋ฅผ ๋ฐ๊ฒ ๋๋ ๊ฒฝ์ฐ๊ฐ ๋ง๋ค๋ ์ ์์ ๋ ๊ฒฝ๊ณ๋ฅผ ๋ฆ์ถ์ง ์์์ผ ํ ๊ฒ์ด๋ค.
์ฃผ์ ์ด: ์ปค๋จผ๋ก, ๋น๊ตํ์ ๋ฒ, ๋ฏธ๊ตญํ์ ๋ฒ์ ํ์ฑ, ๋กํฌ๋ ํ๊ฒฐ, ํ์ฌ์ ์์
ํ ๋ฒ: 2004-21966็ฎ ๆฌก
โ
ฐ
์ฐ๊ตฌ์ ๋ชฉ์ 1
์ฐ๊ตฌ์ ๋ฒ์ 4
์ 1์ฅ ๋ฌธ์ ์ ์ ๊ธฐ 5
โ
. ์์ค 5
โ
ก. 2011๋
๊ฑด์ถ์ ๊ณ ์ ๊ดํ ๋๋ฒ์ ์ ์ํฉ์์ฒด ํ๊ฒฐ 6
1. ์ฌ์ค๊ด๊ณ 6
2. ๋๋ฒ์์ ํ๋จ 7
3. ํ๊ฐ 12
์ 2์ฅ ์ปค๋จผ๋ก์ ๋ฏธ๊ตญํ์ ๋ฒ์ ํ์ฑ 15
โ
. ์ปค๋จผ๋ก 15
1. ์ปค๋จผ๋ก์ ์ญ์ฌ 15
2. 17์ธ๊ธฐ์ ์ปค๋จผ๋ก ๋ฒ์ด๋ก 19
3. ์ปค๋จผ๋ก์ ๋ฐฉ๋ฒ๋ก -์ ๋น์ ์ฌ๊ณ 23
4. ๊ฒฐ์ด: ์ปค๋จผ๋ก์ ๊ฐ๋
29
โ
ก. ์ปค๋จผ๋ก์ ํ์ ๋ฒ 32
1. ์ปค๋จผ๋ก์ ํ์ ๋ฒ์ ๋ถ๋ฆฌ 32
2. ์ปค๋จผ๋ก ์ฒด๊ณ์์ ์ ๋ก์ ๋ฒ๋ฅ ์ ๊ด๊ณ 33
โ
ข. ๋ฏธ๊ตญํ์ ๋ฒ์ ํ์ฑ 38
1. ํ์ ๋ฒ์ ๊ฐ๋
38
2. ๊ณต๋ฒ๊ณผ ์ฌ๋ฒ์ ๊ตฌ๋ณ ๋ฌธ์ 40
3. ๋ฏธ๊ตญํ์ ๋ฒ ํ์ฑ์๊ธฐ์ ๋ํ ๋
ผ์ 41
4. ํ์ ๋ฒ ํ์ฑ๊ธฐ์ ์ญ์ฌ์ ์ํฉ 43
์ 3์ฅ ๋ฏธ๊ตญ ์ฐ๋ฐฉ๋๋ฒ์ ํ๊ฒฐ์ ๋ถ์ 47
โ
. ๊ฐ์ค 47
โ
ก. Locher v. New York ํ๊ฒฐ 49
1. ์ฌ๊ฑด์ ๋ด์ฉ 49
2. ์ฐ๋ฐฉ๋๋ฒ์์ ํ๋จ 49
3. ๊ฒํ 51
โ
ข. Smyth v. Ames ํ๊ฒฐ 58
1. ๋์
58
2. ์ฐ๋ฐฉ๋๋ฒ์์ ํ๋จ 59
3. ์ฌ๊ฑด์ ๋ฐฐ๊ฒฝ 63
4. ๊ฒํ 67
5. ๊ด๋ จ ๋ฌธ์ : ์ฐ๋ฐฉํต์์์ํ 72
โ
ข. United States v. E. C. Knights Co. ํ๊ฒฐ 77
1. ์ฒญ๊ตฌ์ ๋ด์ฉ 77
2. ์ฐ๋ฐฉ๋๋ฒ์์ ํ๋จ 78
3. ์ฌ๊ฑด์ ๋ฐฐ๊ฒฝ: ์
๋จผ๋ฒ์ ์ ์ ๊ฒฝ์ 80
4. ๊ฒํ 82
5. ๊ด๋ จ๋ฌธ์ : ์ฐ๋ฐฉ๊ฑฐ๋์์ํ 85
์ 4์ฅ ์์ฌ์ 89
1. ์ปค๋จผ๋ก์ ๋ํ ์ ๊ทผ 89
2. ๊ฑด์ถ์ ๊ณ ํ๊ฒฐ์ ๋ํ์ฌ 91
3. ํ์ฌ์ ์์ 92
4. ํ์ ๋ฒ ๋ฐฉ๋ฒ๋ก ์ ๋ํ ์์ 93
์ฐธ ๊ณ ๋ฌธ ํ 95
97Maste
Revolt against Taboo: The Encounter between Postwar Okinawa and the Japanese Emperor - Focusing on Medoruma Shuns Heiwa-doฬri to nazukerareta machi o aruite
์ด ๊ธ์ ์ผ์ข
์ ํํ์ ๊ธ๊ธฐ์ธ ์ฒํฉ์ ๋ํด ์ ํ ์ผ๋ณธ๋ฌธํ๊ณผ ์ ํ ์คํค๋์๋ฌธํ์ด ๊ฐ๊ฐ ์ด๋ป๊ฒ ๋์ํด์๋์ง ๊ณ ์ฐฐํ ๊ฒ์ด๋ค. ์ ํ๋ฏผ์ฃผ์ฃผ์์ ์ด๊ตญ๊ฐ์ฃผ์๊ฐ ํผ์ฌํ๋ ๋ณธํ ์ ์์๊ณผ ๊ทธ์๋ ๋ ๋ค๋ฅธ ์ธต์์ ๋์ฌ ์๋ ์คํค๋์๋ฅผ ๋๋น์ ์ผ๋ก ์ดํด ์ ํ ์ผ๋ณธ๊ณผ ์คํค๋์ ๊ทธ๋ฆฌ๊ณ ์ฒํฉ์ ํ์ ๋ฌธ์ ๋ฅผ ๋ถ์ํ๊ณ ์ ํ๋ค. 1960๋
๋ ์ผ๋ณธ์์๋ ๋ฏธ์ผ์์ ๋ณด์ฅ์กฐ์ฝ์ ๊ฐ์ ์ ๋๋ฌ์ธ๊ณ ์ข์ฐ ์ ์น๊ถ์ด ํฌ๊ฒ ๋๋ฆฝํ๋ค. ๊ทธ ๊ฐ์ด๋ฐ ์ฐ์ต ์ฒญ๋
๋ค์ด ์ผ์ผํจ ์์ฌ๋๋ง ์ฌ๊ฑด(ๆต
ๆฒผไบไปถ, 1960. 10. 12)๊ณผ ์๋ง๋์นด ์ฌ๊ฑด(ๅถไธญไบไปถ, 1961. 2. 1)์ ์ ํ๋ฏผ์ฃผ์ฃผ์์ ์ด๊ตญ๊ฐ์ฃผ์๊ฐ ํผ์ฌํ๋ ์ ํ ์ผ๋ณธ์ ์ด์ค์ ์ธ ํ์ค์ ๊ทธ๋๋ก ๋๋ณํ๋ ๊ฒ์ผ๋ก, ์ด ๋ ์ฌ๊ฑด์ ์ฒํฉ์ด ์ผ๋ณธ์ธ์ ๋ชธ๊ณผ ๋ง์์ ๊ฐ๋ ฅํ๊ฒ ํฌํํ๋ ์ฅ์น์์ ๋์ฑ ๋๋ ทํ๊ฒ ๋ถ๊ฐ์ํค๋ ๊ฒฐ๊ณผ๋ฅผ ๋ณ๊ธฐ๋ ํ๋ค. ์ฒํฉ(์ )์ด๋ผ๋ ์ฌ์์ ์ฒ ์ฑ
์ ๋ฐ์ด๋๊ณ ์ ํ๋ ๋ ๋ฌธํ์ ํ์นด์์ ์์น๋ก(ๆทฑๆฒขไธ้)์ ์ค์ ๊ฒ์๋ถ๋ก(ๅคงๆฑๅฅไธ้)๋ ์ฐ์ต ์ฒญ๋
๋ค์ ํ
๋ฌ์ ์ง๊ฐ์ ์ ์ผ๋ก ์ฐ๋ฃจ๋๋ฉด์ ์ ํ์ผ๋ณธ๋ฌธํ ๊ณต๊ฐ์ ๋๋ ์ฒํฉ์ ๋ฑ์ฅ์ํฌ ์ ์์์ ์ฆ๋ช
ํด ๋ณด์ด๊ณ ๋ง์๋ค. ์ดํ ์ ํ์ผ๋ณธ๋ฌธํ์ ์ฒํฉ์ด ๋ค์ ๋ฑ์ฅํ๊ฒ ๋ ๊ฒ์ 1986๋
์ ์ด๋ฅด๋ฌ์๋ค. ์คํค๋์์ ์๊ฐ ๋ฉ๋๋ฃจ๋ง ์(็ฎๅ็ไฟ)์ด ์ด ใํํ๊ฑฐ๋ฆฌ๋ก ๋ถ๋ฆฌ๋ ๊ธธ์ ๊ฑธ์ผ๋ฉฐใ๋ ํจ์ ํ ์คํค๋์๋ฅผ ๋ฐฉ๋ฌธํ ํฉํ์ ๋ถ๋ถ์๊ฒ ํ ์น๋งค ๋
ธ์ธ์ด ์์ ์ ๋๋ณ์ ํฌ์ฒํ๋ ์ฌ๊ฑด์ ๊ทธ๋ฆฌ๊ณ ์๋ค. ์ธ์ด์ ๊ธฐ์ต์ ๋ฐ์ฏค ์์ด๋ฒ๋ฆฐ ์น๋งค ๋
ธ์ธ์ ๋น์ ์์ ์ธ ์ ์ฒด๋ ์ ์์ ์ธ ๊ท์จ๊ณผ ๊ท์ ๊ฐ ์ ์ฉ๋๊ธฐ ํ๋ ์์ธ์ ์ธ ์ ์ฒด์ ๋ค๋ฆ ์๋๋ค. ์ด ์์ธ์ ์ ์ฒด๊ฐ ์ผ์ผํจ ํ
๋ฌ๋ ์ผ๋ณธ์ด๋ผ๋ ๊ตญ๋ฏผ๊ตญ๊ฐ ์์ ํฌ์ญ๋ ์ ์๋ ์คํค๋์์ ์์ธ์ ์ธ ์ํฉ์ ์์ํ๋ ๊ฒ์ด๊ธฐ๋ ํ๋ค. 1980๋
๋ ์ ํ ์ดํ๋ฅผ ์ด๋ฉฐ, ์ผ์ฅ๊ธฐ ๊ฒ์์ด๋ ๊ธฐ๋ฏธ๊ฐ์ ์ ์ฐฝ๊ณผ ๊ฐ์ ๊ตญ๊ฐ์๋ก๋ฅผ ๋์ฑ ๊ฐํํ์ฌ ๋ณด์ํ๋๋ ๋ณธํ , ๊ทธ๋ฆฌ๊ณ ๋ณธํ ๋ณต๊ท๋ก ์ผ๋ณธ์ ๋น ๋ฅด๊ฒ ํธ์
๋์ด๊ฐ๋ ์คํค๋์๋ฅผ ๋ชฉ๋ํ ๋ฉ๋๋ฃจ๋ง ์์ ์ด๋ฏธ 20์ฌ ๋
์ ์ ํจ๋ฐฐํ๊ณ ์นจ๋ฌต์ผ๋ก ์ผ๊ดํ๊ณ ์๋ ๊ธ๊ธฐ์ ๋ค์ ๋ง์ฃผ ๋ณด๊ณ ์ ํ๋ ๊ฒ์ด๋ค.
The purpose of this study is to examine how postwar Japanese literature and postwar Okinawa literature responded to the Japanese emperor, a sort of taboo of expression. In addition, this study attempts to analyze postwar Japan, Okinawa, and the symbol of the Japanese emperor by comparing the mainland, where postwar democracy and super-nationalism co-existed, with Okinawa, which stood on another layer. In Japan of 1960s, the right and left parties confronted with each other on the issue of the revision of Security Treaty between the United States and Japan. In the meantime, young right-wing people executed Asanuma Assassination (10.12.1960) and Shimanaka Incident (2.1.1961), representing the ambivalent reality of postwar Japan where postwar democracy and super-nationalism co-existed. Such incidents, in the end, more clearly showed the fact that the Japanese emperor is still a tool to strongly capture the minds and bodies of Japanese people. As Hukazawa Shiciro and Oe Kenzaburo, writers who desired to overcome the imagery fence, the Japanese emperor, became the target of terrorism by young right-wing people. They eventually proved that the Japanese emperor could no longer appear in the space of postwar Japanese literature. In 1986, the Japanese emperor reappeared in postwar Japanese literature. Heiwa-doฬri to nazukerareta machi o aruite written by Medoruma Shun from Okinawa described the incident that an elderly with Dimentia threw his excrement to the Royals visiting Okinawa after the defeated war. The elderly who had lost his linguistic ability and memory was an exceptional body, which normal rules or regulations could be hardly applied. The terror committed by this exceptional body also implied the exceptional situation of Okinawa that it could not become an integral part of the nation-state, Japan. Living in prewar days of 1980s, watching the mainland become conservative with intensified national rituals, such as raising the Japanese flag and singing Kimigayo, and experiencing the quick incorporation of Okinawa to Japan, Medoruma Shun desired to face the taboo once again that had been lost and remained silent for nearly twenty years
The Japanese Beauty Stratum and Kawabata Yasunari
๊ฐ์๋ฐํ ์ผ์ค๋๋ฆฌ๊ฐ ์ผ๋ณธ ์ต์ด์ ๋
ธ๋ฒจ ๋ฌธํ์์ ๋ฐ์ ๊ฒ์ 1968๋
์ ์ผ์ด๋ค. ๋น์ ๊ฐ์๋ฐํ๋ ์คํกํ๋ฆ์ ์ค์จ๋ด ์์นด๋ฐ๋ฏธ์์ (็พใใๆฅๆฌ{ใฎ็ง: ใใฎๅบ่ชช)์ด๋ผ๋ ์ ๋ชฉ์ผ๋ก ๊ธฐ๋
๊ฐ์ฐ์ ํ๋๋ฐ, ์ด๋ ์๋ฆ๋ค์ด ์ผ๋ณธ์ด ๊ตญ๋ด์ธ์ ์ผ๋ก ์น์ธ๋ฐ๋ ํ๊ธฐ์ ์ธ ์ฌ๊ฑด์ด์๋ค. ๊ฐ์๋ฐํ๊ฐ ๊ทธํ ๋ก ๊ฐ์กฐํ๋ ์๋ฆ๋ค์ด ์ผ๋ณธ์ด๋ ๊ตฌ์ฒด์ ์ผ๋ก ๋ฌด์์ ๋งํ๋ ๊ฒ์ผ๊น. ํจ์ ํ์ ๊ฐ์๋ฐํ๋ ์ฌ๋ฌ ๊ธฐํ๋ฅผ ํตํด ์ผ๋ณธ ๋ฏธ์ ์ ํต์ด๋ ์ ์ฐํ, ๊ณ ๋(ๅคไพ)์ ์ผ๋ณธ์ผ๋ก ๋์๊ฐ ๊ฒ์ ์ฒ๋ช
ํ ๋ฐ ์์๋ค. ๊ฒฐ๋ก ์ ์ผ๋ก ๋งํ๋ฉด ์ด๋ ํจ์ ํ์ ์ํฉ์ ๋ดํฉํ๊ณ ์์ตํ๊ธฐ ์ํ ์ผ์ข
์ ๋ฐฉํธ์ด์๋ค๊ณ ๋ณผ ์ ์๋ค. ์๋ํ๋ฉด ๊ณ ๋ ์ผ๋ณธ๊ณผ ํ์ฌ์ ์ผ๋ณธ์ ์ง๊ฒฐ์ํค๊ธฐ๋ง ํ๋ฉด ์ ์์ ๊ดํ ์์ฒ์ ์ํ์ ๋ด์ธํ ์ ์๊ธฐ ๋๋ฌธ์ด๋ค. ๊ณ ๋ ์ผ๋ณธ์๋ ํจ์ ์ ๊ดํ ์ด๋ ํ ์ญ์ฌ์ ๊ฒฝํ๋ ๊ฐ์ธ๋์ด ์์ง์๋ค. ๋ฐ๋ผ์ ์์ํ๊ณ ์๋ฆ๋ค์ด ์๊ฐ์ธ ๊ณ ๋ ์ผ๋ณธ์ ํจ์ ํ์ ์ํฉ์์ ์๋กญ๊ฒ ์ ์ ํ ์ ์๋ค
๋ฉด, ์ ์ ๊ธฐ๊ฐ์ ๊ณต๋ฐฑ์ผ๋ก ์ฒ๋ฆฌํ ์ฑ ์ผ๋ณธ ํน์ ์ผ๋ณธ ๋ฏผ์กฑ, ์ผ๋ณธ์ ์ ํต์ด๋ผ๋ ๊ด๋
์ ๊ท ์ด ์์ด ๋งค๋ํ๊ฒ ํ์์ํฌ ์ ์๋ ๊ฒ์ด๋ค. ๋๋ฌธ์ ๊ฐ์๋ฐํ๋ ์๊ตฌ ๊ทผ๋๋ฌธํ์ ์์ฅ์ผ๋ก๋ถํฐ ์์ ๋ก์ ๋ ๊ณ ์ ๋ฌธํ์ ๋ํด ๋์ด ํ๊ฐํ์๊ณ , ์ฌ๊ธฐ์ ์ผ๋ณธ์ ๋ฏธ์ ๊ทผ์์ด ์ ์ฌ๋์ด ์๋ค๊ณ ๊ฐ์กฐํ๋ค. ์ด์ ๊ฐ์ ์๋ฏธ์์ ๋ณธ๋ค๋ฉด, ๊ฐ์๋ฐํ๊ฐ ์ ํ์ ์ผ๋ณธ์ ๋ฏธ์ ๊ดํด ์ง์ฐฉํ ๊ฒ์ ์ ์, ํน์ ํจ์ ์ ๋ํ ๋ฅ๋์ ์ธ ๋ง๊ฐ๊ณผ ์ฌ๊ฑด์ ํ์์๋ค๊ณ ๋ณผ ์ ์๋ค.
ํํธ ์ ํ ์ผ๋ณธ์ฌํ์ ๋ณด์ํ๋ผ๋ ํ ์ ์์ ๋
ธ๋ฒจ ๋ฌธํ์์ด๋ผ๋ ์์ง์ ์ธ ๊ถ์์ ๊ฐ์๋ฐํ์ ํ๋ฒ์ด ๋ํด์ ธ, ์๋ฆ๋ค์ด ์ผ๋ณธ์ด๋ผ๋ ๊ฐ์์ ํ์ค๊ณผ ํ๊ตฌ์ ์ง์ค์ด ์ ์ฐจ ๋ฟ๋ฆฌ๋ฅผ ๋ด๋ฆฌ๊ฒ ๋์์์ ๋ถ์ ํ ์ ์๋ ์ฌ์ค์ด๋ค. ๊ทธ์ ๋๋ถ์ด ๊ฐ์๋ฐํ์ ๋ฏธ์ ์ธ๊ณ๊ด์ด ์ง๊ธ์ ์ผ๋ณธ ์ฌํ์์ ์ ์น์ ์์ฌ ๋ด์ง ํต์น ์ ๋ต์ผ๋ก ํญ๋๊ฒ ์์ฉ๋๊ณ ์๋ ์ ๋ ์ง์ ํ์ง ์์ ์ ์๋ค. ๊ตญ๋ฏผ๊ตญ๊ฐ๋ผ๋ ์์ฅ์ด๋ ์ธ๊ณํ ๊ตญ๋ฉด ์์์ ํธ์ถ๋์๋ ์๋ฆ๋ค์ด ์ผ๋ณธ์ ์ฌ์ ํ ๊ฐ์ฑ์ ๊ณต๋์ฒด ๊ตฌ์ฑ์ ์ ๊ทน์ ์ผ๋ก ๊ฐ์
ํ๊ณ ๋ด์ฌํ๊ณ ์๋ ๊ฒ์ด๋ค.Kawabata Yasunari, the first Japanese to be awarded the Nobel Prize in Literature, received the award in 1969. On the occasion, he delivered a commemorative speech Japan, the Beautiful and Myself: An Introduction (็พใใๆฅๆฌ{ใฎ็ง-ใใฎๅบ่ชช) at the Swedish Academy, which was a groundbreaking event that achieved the recognition of beautiful Japan worldwide. What is the beautiful Japan that Kawabata underlined to such a great extent? After Japans defeat in the World War II, he proclaimed to return to the tradition of Japanese beauty, old mountains and streams, and ancient Japan at every occasion. It was a kind of measure available to stitch up and settle the situation after the defeat, in that postwar scars and pains could be patched up as far as a direct link could be built between the ancient Japan and present Japan. The experience of losing wars was not imprinted on the ancient Japan. Accordingly, if the ancient Japan that remained a pure and beautiful time could be wholly
and newly obtained in such a postwar situation, the concept including Japan, Japanese race,
and Japanese tradition could be seamlessly resurrected, leaving the war period vacant. On this
account, Kawabata highly appreciated the classical literature that is distant from the modern Western literature and emphasized the classical literatures inherent essence of Japanese beauty. In this context, it may be that Kawabatas adherence to the Japanese beauty after the defeat was an act of active forgetting and reconstructing in relation to the war or defeat. Meanwhile, it is an undeniable truth that the virtual reality and fictional truth in the beautiful Japan were gradually pervading the postwar conversation, as Kawabatas symbolic authority and narrative were introduced. In addition, it is notable that Kawabatas aesthetic worldview is widely cited in todays Japanese society as a political rhetoric or ruling strategy. Once invoked in the contexts of globalization or nation-state, the beautiful Japan still actively constitutes an emotional community