34 research outputs found
๋์ถ ์ ์ ๋ ์ํ-, ๋ฒ ํ-๊ธ๋ฃจ์ฝ์๋ฐ์ด์ฆ ์ ํด์ ์ ํน์ฑ ๊ท๋ช ๊ณผ ์ํ์์ ์ ์ฉ์ ๊ดํ ์ฐ๊ตฌ
ํ์๋
ผ๋ฌธ (๋ฐ์ฌ)-- ์์ธ๋ํ๊ต ๋ํ์ : ๋์
์๋ช
๊ณผํ๋ํ ์ํ๊ณตํ๊ณผ, 2019. 2. ์ต์์ง.๋์ถ ์์ ํญ์ฐํ, ํ์์กฐ์ , ๋ฑ์ ํจ๋ฅ์ด ์๋ ๊ฒ์ผ๋ก ์๋ ค์ ธ ์์ด์ ๊ณ ๋์๋ ํ๊ตญ, ์ค๊ตญ ๋ฑ ์์์ ์ง์ญ์์ ์ฝ์ผ๋ก ์ด์ฉ๋์ด์๋ค. ํ์ง๋ง ์์๋ ์ด๋งค์ ๋นํด ๋์ฑ ํ๋ถํ ํ๋ผ๋ณด๋
ธ์ด๋์ ํด๋ฆฌํ๋์ด ์กด์ฌํจ์๋ ๋ถ๊ตฌํ๊ณ ์ต๊ทผ ๋๋ถ๋ถ์ ์ฐ๊ตฌ๊ฐ ์ด๋งค๋ก ์ง์ค๋๋ฉด์ ์์ ๋ถ์ฐ๋ฌผ๋ก ์ฌ๊ฒจ์ ธ ๋ฒ๋ ค์ง๊ณ ์๋ค.
ํ๋ผ๋ณด๋
ธ์ด๋์ ํด๋ฆฌํ๋์ ๋
น์ฐจ๋ฅผ ํฌํจํ ์์ ์ด์ฉํ ์ฐจ๋ฅ์ ํ๋ถํ๋ค๊ณ ์๋ ค์ ธ ์์ผ๋ฉฐ, ์ด๋ค์ ฮฑ-๊ธ๋ฃจ์ฝ์๋ฐ์ด์ฆ์ ํ์ฑ์ ์ ํดํ๋ ๊ฒ์ผ๋ก ์๋ ค์ ธ ์๋ค. ์ด๋ฌํ ฮฑ-๊ธ๋ฃจ์ฝ์๋ฐ์ด์ฆ ์ ํด์ ๋ค์ ๋น๋จ์ ๋น๋ง์ ์น๋ฃ์ ๋ก ํ์ฉ ๊ฐ๋ฅ์ฑ์ด ์์ด ๊พธ์คํ ๊ด์ฌ์ ๋ฐ๊ณ ์๋ค. ์ต๊ทผ ์์นด๋ณด์ค์ ๊ฐ์ด ฮฑ-๊ธ๋ฃจ์ฝ์๋ฐ์ด์ฆ ์ ํดํ์ฑ์ ์ด์ฉํ ์ํ์ฝ๋ค์ด ๊ฐ์ง ๋จ์ ๋ค ๋๋ฌธ์ ์ฒ์ฐ์ ฮฑ-๊ธ๋ฃจ์ฝ์๋ฐ์ด์ฆ ์ ํด์ ๋ฅผ ์ฐพ๋ ์ฐ๊ตฌ๊ฐ ํ๋ฐํ ์งํ๋๊ณ ์๋ค. ํ์ง๋ง ๋์ถ ์์๋ ์๋ ค์ง์ง ์์ ๋ฌผ์ง๋ค์ด ๋ค์ ์กด์ฌํ๋ฉฐ, ๋ค์ํ ํ๋ผ๋ณด๋
ธ์ด๋์ ํด๋ฆฌํ๋์ด ์กด์ฌํจ์๋ ๋ถ๊ตฌํ๊ณ , ๋์ถ ์์ ๋ํ ฮฑ-๊ธ๋ฃจ์ฝ์๋ฐ์ด์ฆ ์ ํดํ์ฑ์ ๊ดํ ์ฐ๊ตฌ๊ฐ ์งํ๋์ด ์์ง ์์๋ค. ๊ทธ๋์ ์ด๋ฒ ์ฐ๊ตฌ์์ ๋์ถ ์์ ฮฑ-๊ธ๋ฃจ์ฝ์๋ฐ์ด์ฆ ์ ํดํ์ฑ์ ๋ํด ์์๋ณด์๋ค.
๊ธฐ์กด์ ์๋ ค์ง ๋์ถ ์์ ์กด์ฌํ๋ ฮฑ-๊ธ๋ฃจ์ฝ์๋ฐ์ด์ฆ ์ ํด์ ์ ฮฑ-๊ธ๋ฃจ์ฝ์๋ฐ์ด์ฆ ์ ํดํ์ฑ์ ์์นด๋ณด์ค์ ๋นํด ์ฝํ ๊ฒ์ผ๋ก ์์๋์์ง๋ง, ์๋น ์คํ ๊ฒฐ๊ณผ ์์นด๋ณด์ค๋ณด๋ค ์ฝ 2๋ฐฐ ๊ฐํ ์ ํด๋ฅผ ๋ํ๋๋ค. ์ด์ ๊ฐ์ด ์์๋ณด๋ค ๊ฐํ ์ ํด๊ฐ ๋ํ๋๊ฒ ๋ ์์ธ์ ๋ํด ์์๋ณด๋ ์ฐ๊ตฌ๋ฅผ ์งํํ์๋ค. ๊ฐ์ฅ ์ ํด๊ฐ ๊ฐํ ๋ฌผ์ง์ ๋ถ๋ฆฌ ์ ์ ํด ๋ณธ ๊ฒฐ๊ณผ 3',5'-di-C-ฮฒ-D-glucosyl phloretin์ด๋ผ๋ ๋ฌผ์ง์ ์ํด ๊ฐํ ์ ํด๊ฐ ๋ํ๋๋ ๊ฒ์ผ๋ก ํ์ธ๋์๋ค. ์ด ๋ฌผ์ง์ ๊ธฐ์กด์ ฮฑ-๊ธ๋ฃจ์ฝ์๋ฐ์ด์ฆ ์ ํด๋ฅ๋ ฅ์ ๊ดํ์ฌ ๋ณด๊ณ ๋ ๋ฐ๊ฐ ์๋ ๋ฌผ์ง์ด์์ผ๋ฉฐ, ฮฑ-๊ธ๋ฃจ์ฝ์๋ฐ์ด์ฆ ์ ํด ๋ฅ๋ ฅ์ ํ์ธํด ๋ณธ ๊ฒฐ๊ณผ ์์นด๋ณด์ค์ ๋นํด ์ฝ 13.5๋ฐฐ ๊ฐํ ์ ํด๋ฅผ ํ์๋ค. ๊ทธ๋ฆฌ๊ณ ์ด ์ ํด์ ๋ ฮฑ-์๋ฐ๋ ์ด์ฆ๋ ์ ํดํ์ง ์๊ณ , ์ ํ์ ์ผ๋ก ฮฑ-๊ธ๋ฃจ์ฝ์๋ฐ์ด์ฆ๋ง์ ์ ํดํ์ฌ ์์นด๋ณด์ค๋ณด๋ค ๋ถ์์ฉ์ด ์ ์ ๊ฒ์ผ๋ก ๊ธฐ๋๋์๋ค. ๊ฒ๋ค๊ฐ ๋ชจ๋ฐฉ ์ฒด์ธ ์์ฅ๊ด ํ๊ฒฝํ์์ ์คํํ ๊ฒฐ๊ณผ ํต๊ณ์ ์ผ๋ก ์ ์๋ฏธํ ์ฐจ์ด ์์ด -๊ธ๋ฃจ์ฝ์๋ฐ์ด์ฆ๋ฅผ ์ ํดํ๋ ๊ฒ์ ํ์ธํ์๋ค.
๋์ถ ์์ ฮฑ-๊ธ๋ฃจ์ฝ์๋ฐ์ด์ฆ ์ ํดํ์ฑ์ ์ด์ฉํ์ฌ ์ํ ํ๋น ์กฐ์ ์ ๋์์ ์ค ์ ์๋ ๊ธฐ๋ฅ์ฑ ๋ฐฅ์ ์ ์กฐ๋ฅผ ํด ๋ณด์๋ค. ๋ฐฅ์ ํ๊ตญ, ์ธ๋, ์ค๊ตญ ๋ฑ ์ฌ๋ฌ ๋๋ผ์์ ์ฃผ์์ผ๋ก ํ๊ณ ์๋ค. ํ์ง๋ง ํ๋น์ง์๊ฐ ๋งค์ฐ ๋์ ์ํ์ ์ํ์ฌ ์ํ ํ๋น ์กฐ์ ์ด ํ์ํ ๋น๋จํ์๋ค์ ๋ฐฑ๋ฏธ๋ณด๋ค ํ๋ฏธ๋ฅผ ๊ถํ๊ณ ์๋ค. ํ์ง๋ง ํ๋ฏธ์ ์๊ฐ ๋๋ฌธ์ ๋ง์ ํ์๋ค์ด ํ๋ฏธ๋ฅผ ๊ธฐํผํ๊ณ ์๋ค. ๊ทธ๋์ ์ด๋ฒ ์ฐ๊ตฌ์์ ๋์ถ ์์ ฮฑ-๊ธ๋ฃจ์ฝ์๋ฐ์ด์ฆ ์ ํดํ์ฑ์ ์ด์ฉํ์ฌ ์ํ ํ๋น ์กฐ์ ์ ๋์์ ์ค ์ ์๊ณ , ์๊ฐ์ ๋ฐฑ๋ฏธ์ ์ ์ฌํ ๊ธฐ๋ฅ์ฑ ๋ฐฅ์ ์ ์กฐํ๋ ๊ฒ์ ๋ชฉํ๋ก ํ์๋ค. ๋์ถ ์ ์ถ์ถ๋ฌผ์ ์์ด 0, 5, 10 mg/mL ์ฒจ๊ฐ๋์ด๋ ๋ฐฅ์ ํ๋๋์ค์ ์คํฐํค๋์ค์๋ ์ํฅ์ด ์๋ ๊ฒ์ ๊ด์ฐฐํ์๋ค. ๋์ถ ์ ์ถ์ถ๋ฌผ์ ์์ด 0, 5, 10 mg/mL๋ก ์ฆ๊ฐํ ์๋ก ๋น ๋ถํด๊ฐ ์ต๋์น์ ๋๋ฌํ๋ ์๊ฐ์ด 180, 210, 360 ๋ถ์ผ๋ก ์ฆ๊ฐํ์๋ค. ํฅ๊ณผ ์์ ์์์ง๋ง ๊ธฐํธ๋์ ์ํ ๊ด๋ฅํ๊ฐ๋ฅผ ํ์์ ๋ ๊ธฐ์กด์ ์ฆ์๋ฐฅ๊ณผ ํต๊ณ์ ์ผ๋ก ์ ์๋ฏธํ ์ฐจ์ด๊ฐ ์์๋ค. ์ด๋ฅผ ํตํด ๋์ถ ์์ ฮฑ-๊ธ๋ฃจ์ฝ์๋ฐ์ด์ฆ ์ ํด ํ์ฑ์ ์ด์ฉํ์ฌ ๊ธฐ๋ฅ์ฑ ๋ฐฅ ์ ์กฐ์ ๊ฐ๋ฅ์ฑ์ ํ์ธํ ์ ์์๋ค.
๋์ถ ์์ ํ๋ถํ ๋ฃจํด์ ์์ด์์ฟผ์ํด์ผ๋ก ์ ํํ๋ ๊ณผ์ ์์ ฮฒ-๊ธ๋ฃจ์ฝ์๋ฐ์ด์ฆ ์ ํด์ ์ ์กด์ฌ ๊ฐ๋ฅ์ฑ์ ๋ํด ์ฐ๊ตฌํ๊ธฐ ์์ํ์๊ณ , ฮฒ-๊ธ๋ฃจ์ฝ์๋ฐ์ด์ฆ ์ ํด์ ์ ์กด์ฌ๋ฅผ ์ฆ๋ช
ํ์๋ค. ๋์ถ ์์ ์กด์ฌํ๋ ฮฒ-๊ธ๋ฃจ์ฝ์๋ฐ์ด์ฆ ์ ํด์ ๋ฅผ ๋ถ๋ฆฌ ์ ์ ํ์๋ค. ๊ทธ ์ ํด์ ์ ์์ ๋ถ์๋์ 392 g/mol์ด์์ผ๋ฉฐ, ๋ถ์์์ C17H23O13N์ผ๋ก ์์๋์๋ค. ๊ทธ๋ฆฌ๊ณ ์ด ์ ํด์ ๋ ํผํฉ ๋น๊ฒฝ์์ ์ ํด์ ์์์ ๋ํ๋ด๋ ๊ฒ์ผ๋ก ํ์ธ๋์๋ค. ์ด ๋ฌผ์ง์ ๊ธฐ์กด์ ์๋ ค์ง ์ ํด์ ๊ฐ ์๋ ์๋ก์ด ์ ํด์ ๋ก ๊ตฌ์กฐ, ์ ํด ๊ธฐ์์ ๋ํ ์ถ๊ฐ ์ฐ๊ตฌ๊ฐ ํ์ํ๋ค.
๋์ถ ์์ ฮฒ-๊ธ๋ฃจ์ฝ์๋ฐ์ด์ฆ ์ ํดํ์ฑ์ ์ด์ฉํ์ฌ ๊ธฐ๋ฅ์ฑ์ด ๊ฐํ๋ ์๋ชฝ์ฃผ์ค๋ฅผ ์ ์กฐํ์๋ค. ์ด๋ง ์ฑ๋ถ์ธ ๋๋ฆฐ์ง์ ์ํธ๋ฌ์ค๊ณ ๊ณผ์ผ ์ฃผ์ค ์ ์กฐ ์ ํ์ง์ ํ์ ์ฃผ์ํ ์์ธ์ด ๋๋ค. ์ด๋ฅผ ์ ๊ฑฐํ๊ธฐ ์ํด ์ํ์ฐ์
์์ ๋๋ฆฐ์ง๋ค์ด์ฆ๋ผ๋ ํจ์๋ฅผ ์ฌ์ฉํ๊ฒ ๋๋ค. ์ด๋ ๋๋ฆฐ์ง๋ค์ด์ฆ์ ์ํด ๋๋ฆฐ์ง์ ๋๋ฆฐ์ ๋์ผ๋ก ์ ํ์ด๋๊ณ , ์ด๋ ์์ฑ๋ ๋๋ฆฐ์ ๋์ ์๋ฌด๋ฐ ๋ง์ด ์๊ณ , ๋ค์ํ ๊ธฐ๋ฅ์ฑ์ ๊ฐ์ง๊ณ ์๋ ๊ฒ์ผ๋ก ์๋ ค์ ธ ์๋ค. ํ์ง๋ง ์ด ์ฑ๋ถ์ ๋ค์ํ ๊ธฐ๋ฅ์ฑ์๋ ๋ถ๊ตฌํ๊ณ ๋ฌผ์ ๋ํ ์ฉํด๋๊ฐ ๋ฎ์ ์์ฒด๋ด ์ด์ฉ์จ์ด ๋ฎ๋ค๋ ๋จ์ ์ด ์๋ค. ์ฌ๊ธฐ์ ๋์ถ ์์ ฮฒ-๊ธ๋ฃจ์ฝ์๋ฐ์ด์ฆ ์ ํด ํ์ฑ์ ์ด์ฉํ์ฌ ๋๋ฆฐ์ง์ ์ค๊ฐ์์ฑ๋ฌผ์ด๋ฉฐ, ๋ค์ํ ๊ธฐ๋ฅ์ฑ์ ๊ฐ์ง๊ณ ์๊ณ , ๋ฌผ์ ๋ํ ์ฉํด๋๊ฐ ๋๋ฆฐ์ ๋ ๋ณด๋ค ๋์ ํธ๋ฅด๋์ผ๋ก ์ ํ์ด ๋์ด ๊ธฐ๋ฅ์ฑ์ด ๊ฐํ๋ ์๋ชฝ์ฃผ์ค๋ฅผ ์ ์กฐํ๋ ๊ฒ์ ๋ชฉํ๋ก ํ์๋ค. ๋๋ฆฐ์ง๋ค์ด์ฆ ์ฒ๋ฆฌ ์ ์ด๋ง ์ฑ๋ถ์ธ ๋๋ฆฐ์ง์ ํจ๊ณผ์ ์ผ๋ก ์ ๊ฑฐ๋์๊ณ , ํธ๋ฅด๋์ ํจ๋์ด ๋์ถ ์์ ์ฒ๋ฆฌํ์ง ์์ ์๋ชฝ์ฃผ์ค์ ๋นํด ์ฝ 1.31๋ฐฐ ๋ง์ 2.47 mmol/mL๊ฐ ์์ฑ๋์๋ค. ๊ฒ๋ค๊ฐ ๋ ๋ฎ์ ์จ๋, ๋ ์ ์ ์์ ํจ์๋ก ์ต์ ์ ์ ๋๋ฌํ๋ ๊ฒ์ด ๊ด์ฐฐ๋์๊ณ , ์ด ๊ฒฐ๊ณผ๋ฅผ ํตํด ์ํ์ฐ์
์ ์ ์ฉ ์ ์ด์ ์ด ๋ ๊ฒ์ผ๋ก ๊ธฐ๋๋๋ค.
์์ปจ๋, ๋ณธ ์ฐ๊ตฌ์์ ๋์ถ ์ ์ ๋์ ์๋ก์ด -, ฮฒ- ๊ธ๋ฃจ์ฝ์๋ฐ์ด์ฆ ์ ํด์ ๋ค์ ์ป์ ์ ์์๊ณ , ์ด๋ค์ ํน์ฑ์ ๊ท๋ช
ํ์์ผ๋ฉฐ, ์ํ์ฐ์
์ ์ ์ฉ๊ฐ๋ฅ์ฑ๋ ํ์ธํ ์ ์์๋ค.The jujube leaf has been used for medicinal purposes throughout the ancient history of several Asian countries due to its antioxidant and sedative properties and regulatory effects on blood pressure. Although the leaf is more abundant in flavonoids and polyphenols as compared to the fruit, the majority of recent research efforts have focused on the fruit and the leaf is regarded as a by-product or waste.
Flavonoids and polyphenols are known to inhibit the activity of ฮฑ-glucosidase. Inhibitors of ฮฑ-glucosidase have received growing interest because of their potential of being used as treatment for diabetes and obesity. Many research groups are trying to find ฮฑ-glucosidase inhibitors from nฮฑatural products because of the disadvantages of commercial drugs that possess ฮฑ-glucosidase inhibitory activity. However, despite the many unknown compounds and various flavonoids in the jujube leaf, no studies have reported on an ฮฑ-glucosidase inhibitory activity from the jujube leaf. Therefore, in this study, I investigated ฮฑ-glucosidase inhibitory activity of the jujube leaf.
The inhibitory activity of jujube leaf on ฮฑ-glucosidase was expected to be low compared to acarbose, but preliminary experiments showed that jujube leaf ฮฑ-glucosidase inhibition was approximately twice as strong as acarbose. Therefore, this strong inhibition was further investigated in this work, which ultimately revealed that the strong inhibition was caused by 3',5'-di-C-ฮฒ-D-glucosyl phloretin. This substance was not previously reported to inhibit ฮฑ-glucosidasethus, the ฮฑ-glucosidase inhibitory activity of this inhibitor was characterized. It was confirmed that the ฮฑ-glucosidase inhibitory activity of this substance was approximately 13.5-times stronger than that of acarbose. This inhibitor can selectively inhibit ฮฑ-glucosidase, as it does not inhibit ฮฑ-amylase. Because of this inhibition specificity, 3',5'-di-C-ฮฒ-D-glucosyl phloretin is expected to have less side effects than acarbose. In addition, in vitro experiments showed that the rate of ฮฑ-glucosidase inhibition was not statistically significantly different.
The functional rice that can control postprandial blood glucose through the use of jujube leaf inhibitory activity on ฮฑ-glucosidase was produced. Rice is a staple food in many Asian countries. However, some people who require control of postprandial blood glucose are more likely to eat brown rice than white rice, but many patients avoid brown rice due to the texture. Therefore, in this study, I aimed to produce functional rice with similar texture to white rice that can use ฮฑ-glucosidase inhibitory activity of jujube leaf to control postprandial blood glucose. It was observed that the addition of jujube leaf extract did not affect the texture of rice including hardness and stickiness. As the amount of jujube leaf extract increased from 0 to 10 mg/mL, the time required for glucose degradation reached its maximum value, increasing from 180 to 360 min. Although the rice possessed the flavor and color of jujube leaf, there was no statistically significant difference from conventional instant rice when sensory evaluation was performed by preference degree. Thus, the possibility of producing functional rice by using the ฮฑ-glucosidase inhibitory activity of jujube leaf was confirmed.
I demonstrated the presence of a ฮฒ-glucosidase inhibitor in the process of converting the rutin present in jujube leaf into isoquercitrine. The expected molecular weight of this ฮฒ-glucosidase inhibitor was 392 g/mol and the predicted molecular formula was C17H23O13N. It was confirmed that this inhibitor showed mixed non-competitive inhibition. This substance is a new inhibitor, so further studies of its structure and inhibition mechanism analysis are needed.
A functionally enhanced grapefruit juice was produced using the ฮฒ-glucosidase inhibitory activity of jujube leaf. Naringin, a bitter compound in citrus fruit juice, is one of the main reasons for a deterioration in the production quality of citrus fruit juice. In the food industry, naringinase is used to remove naringin and then naringenin is produced from naringin. Naringenin is tasteless and has various functionalities. The main drawback of naringenin, despite its different functionalities, is its low bioavailability due to low water solubility. The aim of the present study was to produce grapefruit juice with enhanced functionality by degrading naringin and enhancing the production of prunin using the ฮฒ-glucosidase inhibitory activity of jujube leaf. Naringin was effectively removed and 2.47 mmol/mL of prunin was produced, which was approximately 1.31 times higher than that of grapefruit juice without jujube leaf extract. Moreover, it has been observed that the optimum condition of prunin production was reached with lower temperature, lower amount of enzyme, and this result is expected to be an advantage when applied to the food industry.
In summary, in this study, novel ฮฑ- and ฮฒ-glucosidase inhibitors derived from jujube leaf were isolated and characterized and their applicability to the food industry was confirmed.Contents
Abstract โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ I
Contents โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ...... V
List of Tables โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ.. XI
List of Figures โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ..... XIII
Chapter I. Literature reviewโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ1
I-1. Introduction โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ.โฆ..โฆโฆโฆโฆโฆโฆ... 2
I-2. Glucosidase Inhibitors โฆโฆ.โฆโฆโฆโฆโฆ..โฆ...โฆ...โฆ.โฆโฆ.... 4
I-2-1. ฮฑ-Glucosidase inhibitorsโฆโฆโฆโฆโฆโฆโฆ..โฆโฆ..โฆ.โฆโฆโฆ... 4
I-2-1-1. ฮฑ-Glucosidase inhibitors present in jujube leaf โฆโฆโฆ......10
I-2-1-1-1. Rutin โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ...โฆโฆโฆโฆ...โฆ10
I-2-1-1-1. Catechin โฆโฆโฆ..โฆโฆโฆโฆโฆโฆโฆโฆ...โฆโฆโฆโฆโฆโฆ13
I-2-1-1-1. Isoquercitrin โฆโฆโฆโฆ..โฆโฆ.โฆโฆโฆ...โฆโฆโฆโฆโฆโฆ15
I-2-2. ฮฒ-Glucosidase inhibitors โฆ.....โฆโฆโฆโฆโฆโฆโฆโฆโฆ...โฆโฆ.. 17
I-3. Application of Glucosidase Inhibitors โฆ..โฆโฆโฆโฆโฆ... 19
I-3. References โฆ....โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ...โฆโฆโฆโฆโฆโฆโฆโฆ..21
Chapter II. A novel ฮฑ-glucosidase inhibitor from jujube leaf extract โฆโฆโฆ..โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ.โฆ 30
II-1. Introduction โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ.. 31
II-2. Materials and Methods โฆโฆโฆโฆโฆโฆโฆ......โฆโฆโฆโฆโฆ... 35
II-2-1. Chemicals โฆ..โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ.. 35
II-2-2. Sample preparation โฆโฆโฆโฆโฆโฆโฆโฆ..โฆโฆโฆโฆโฆโฆโฆ.. 36
II-2-3. ฮฑ-Glucosidase inhibition assay โฆโฆโฆโฆ...โฆโฆ..โฆโฆ..โฆ... 37
II-2-4. ฮฑ-Amylase inhibition assay โฆโฆโฆโฆโฆ.โฆโฆโฆโฆโฆโฆโฆ.. 38
II-2-5. Isolation of ฮฑ-glucosidase inhibitor โฆโฆโฆโฆโฆโฆโฆโฆโฆ.. 39
II-2-6. Structure analysis โฆโฆโฆโฆ..โฆโฆโฆโฆ.โฆโฆ..โฆโฆโฆโฆโฆ.. 40
II-2-7. Enzyme kinetic study โฆโฆ...โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ...โฆ42
II-2-8. In vitro digestion โฆโฆโฆโฆ..โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ...43
II-2-9. Statistical analysis โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ...46
II-3. Results and Discussion โฆโฆโฆโฆโฆโฆโฆ.โฆโฆโฆโฆโฆโฆ..... 47
II-3-1. ฮฑ-Glucosidase inhibition โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ.โฆโฆโฆโฆ47
II-3-2. Isolation and purification of novel ฮฑ-glucosidase inhibitor โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ...โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ51
II-3-3. Structure analysis of novel ฮฑ-glucosidase inhibitor โฆโฆโฆ54
II-3-4. Characterization of novel ฮฑ-glucosidase inhibitor โฆโฆ..โฆ57
II-3-4-1. ฮฑ-Glucosidase inhibitory activity โฆโฆโฆโฆโฆ.โฆโฆ.....57
II-3-4-1. ฮฑ-Amylase inhibitory activity โฆโฆโฆโฆ..โฆโฆ...โฆโฆ...60
II-3-5. Kinetic studies โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ..โฆ...โฆโฆโฆ64
II-3-6. In vitro digestion โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ..โฆโฆโฆโฆโฆ66
II-4. Conclusion โฆโฆโฆโฆโฆโฆโฆโฆ..โฆโฆโฆโฆโฆโฆโฆ...โฆโฆโฆ.... 69
II-5. References โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ..โฆโฆโฆโฆ 70
Chapter III. Application of ฮฑ-glucosidase inhibitory activity to produce functionalized riceโฆโฆโฆโฆโฆโฆโฆโฆ 75
III-1. Introduction โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ.... 76
III-2. Materials and Methods โฆโฆโฆโฆโฆโฆโฆโฆโฆ.โฆโฆโฆโฆ.. 78
III-2-1. Chemicals โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ.. 78
III-2-2. Sample preparation โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ.โฆโฆโฆโฆ. 79
III-2-3. Texture analysis โฆโฆโฆโฆโฆโฆโฆ..โฆโฆ...โฆโฆโฆโฆโฆโฆ... 80
III-2-4. Preparation of rat intestinal enzyme solution โฆโฆโฆ..โฆ. 81
III-2-5. Measurement of degree of carbohydrate hydrolysisโฆโฆ.. 82
III-2-6. Sensory analysis โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ...โฆโฆ 83
III-2-6. Statistical analysis โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ 84
III-3. Results and Discussion โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ.85
III-3-1. Texture of rice โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ... 85
III-3-2. Degree of carbohydrate hydrolysis โฆโฆโฆโฆโฆ..โฆโฆโฆ... 89
III-3-2. Sensory test โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ..โฆโฆโฆโฆ..โฆโฆโฆโฆ 91
III-4. Conclusion โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ..โฆโฆโฆโฆโฆ.. 94
III-5. References โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ 95
Chapter IV. A natural ฮฒ-glucosidase inhibitor from jujube leaf extractโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ.โฆโฆโฆโฆโฆโฆ..โฆ...... 97
IV-1. Introduction โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ..โฆโฆโฆ... 98
IV-2. Materials and Methods โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ.โฆโฆ. 101
IV-2-1. Chemicals โฆโฆโฆโฆโฆโฆ.โฆโฆโฆโฆ..โฆโฆโฆ...โฆโฆโฆโฆโฆ101
IV-2-2. Preparation of jujube leaf extract โฆโฆโฆโฆโฆโฆโฆโฆโฆ..102
IV-2-3. ฮฒ-Glucosidase inhibition assay โฆโฆโฆโฆโฆโฆ..โฆโฆโฆโฆ..103
IV-2-4. Isolation of ฮฒ-glucosidase inhibitor โฆโฆโฆ.โฆ..โฆโฆ...โฆ..104
IV-2-4-1. Size exclusion chromatographyโฆ..โฆโฆ.โฆ...โฆโฆ....104
IV-2-4-2. Semi-preparative HPLCโฆโฆโฆโฆ.โฆ..โฆโฆ...โฆโฆ....105
IV-2-5. Characteristic analysis โฆโฆโฆโฆโฆโฆโฆโฆ.โฆ..โฆโฆโฆ.....107
IV-2-5-1. Prediction of the empirical formulaโฆ.โฆโฆ...โฆโฆ...107
IV-2-5-2. Enzyme kinetic studyโฆโฆโฆโฆโฆโฆโฆ.โฆโฆ..โฆโฆ....108
IV-2-6. Statistical analysis โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ.โฆ..โฆ...โฆโฆ..109
IV-3. Results and Discussion โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ...โฆโฆ 110
IV-3-1. Isolation of ฮฒ-glucosidase inhibitor โฆโฆโฆโฆโฆโฆโฆโฆโฆ110
IV-3-1-1. Size exclusion chromatographyโฆโฆ.โฆโฆโฆโฆโฆโฆ...110
IV-3-1-2. Semi-preparative LCโฆโฆโฆ.โฆโฆ..โฆโฆโฆโฆโฆโฆโฆ..114
IV-3-2. Characteristic of ฮฒ-glucosidase inhibito?r from jujube leaf โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ116
IV-3-2-1. Prediction of empirical formula โฆโฆ...โฆโฆโฆโฆ...โฆ116
IV-3-2-2. Enzyme kinetic studyโฆโฆโฆโฆโฆโฆ..โฆโฆโฆโฆโฆโฆ..123
IV-4. Conclusion โฆโฆโฆโฆโฆโฆโฆ..โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ.... 127
IV-4. References โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ.โฆโฆโฆ...โฆ.. 128
Chapter V. Application of ฮฒ-glucosidase inhibitory activity of jujube leaf to produce functionalized grapefruit juice โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ.โฆโฆ.โฆโฆโฆโฆโฆ... 132
V-1. Introduction โฆโฆโฆโฆโฆโฆโฆโฆโฆ..โฆโฆโฆโฆโฆโฆโฆโฆ..... 133
V-2. Materials and Methods โฆโฆ.โฆโฆโฆโฆโฆโฆ.โฆโฆโฆโฆโฆ 136
V-2-1. Chemicals โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ.. 136
V-2-2. Enzymatic biotransformation โฆโฆโฆโฆโฆ...โฆ.โฆโฆโฆโฆ. 137
V-2-3. HPLC analysis โฆโฆโฆ..โฆโฆโฆโฆ..โฆโฆ..โฆโฆโฆโฆโฆโฆ.... 138
V-2-4. Response surface methodology โฆโฆโฆโฆโฆโฆโฆ.โฆโฆโฆ...140
V-2-5. Statistical analysisโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ...โฆโฆโฆ.โฆ. 144
V-3. Results and Discussion โฆโฆโฆโฆโฆโฆโฆ..โฆโฆ..โฆโฆโฆโฆ.145
V-3-1. Enzymatic biotransformation โฆโฆโฆโฆโฆโฆ...โฆโฆโฆโฆ.. 145
V-3-2. Response surface methodology โฆโฆโฆ...โฆโฆโฆ..โฆโฆ..โฆ 147
V-4. Conclusion โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ..โฆโฆโฆโฆโฆ.. 153
V-5. References โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ 154
๊ตญ๋ฌธ ์ด๋ก โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ.โฆโฆโฆ..156Docto
ํ๊ธๆฉๆขฐๅ(ๆๅญๆฉ)๋ฅผ ์ํ ๆง้ ์ ็ก็ฉถ
่งฃๆพๅพ ์ฐ๋ฆฌ ํ๊ธ์ ํ์ด์ฐ๊ธฐ ๋ฌธ์ ๊ฐ ๏ฅ่ญฐ๋๊ณ ๆชข่จ๋ ์ ์ด ์๋ค. ์ด ํ์ด ์ฐ๊ธฐ์ ้ท้ปไธญ์ ํ๊ธ์ ๆฉๆขฐๅ ็นํ ๆๅญๆฉ์ ่ฃฝ้ , ไฝฟ็จ์ ์์ด ๊ทธ ํจ์จ์ ์ด๊ณ ํธ๋ฆฌํ ้ป์ด ์ง์ ๋์๋ค. ๊ทธ๋ฌ๋ ็ถๆ ํ๊ธ์ ์ด๋ฏธ ์ฝ์ ์ ์๊ณ ์ธ์ ์์๋ ๋ง์ ๊ตญ๋ฏผ๋ค๋ก ๋ถํฐ ๊ทธ ์ต์ํ์ง ์์ ์ , ์ฝ๊ธฐ์ ๏ฅงไพฟํ ้ป ็ญ์ด ์ง์ ๋์ด ็ตๅฑ ํ์ด์ฐ๊ธฐ๋ ๆฝ่ก๋์ง ์๊ณ ็พ่ก์ ํ๊ธ ไฝฟ็จๆณ์ด ๆฝ่ก๋์ด ์ค๋์ ์ด๋ฅด๋ ๋ค.
Toleration as basic virtue in the pluralistic society and its implications for civil education
ํ์๋
ผ๋ฌธ(๋ฐ์ฌ)--์์ธ๋ํ๊ต ๋ํ์ :์ฌํ๊ต์ก๊ณผ ์ผ๋ฐ์ฌํ์ ๊ณต,1998.Docto
๋์ถ์ ์ถ์ถ๋ฌผ๋ก๋ถํฐ ํจ์๋ฅผ ํ์ฉํ ์์ด์์ฟผ์ํด ์์ฐ์ ์ต์ ํ์ ๋ฒ ํ๊ธ๋ฃจ์ฝ์๋ฐ์ด์ฆ ์ ํด์ ์ ์กด์ฌ ๊ฐ๋ฅ์ฑ ์ ์
ํ์๋
ผ๋ฌธ (์์ฌ)-- ์์ธ๋ํ๊ต ๋ํ์ : ์ํ๊ณตํ๊ณผ, 2014. 2. ์ต์์ง.Recently, quercetin and its glucosides including isoquercetin (quercetin-3-ฮฒ-D-glucoside, Q3G) and rutin (quercetin-3-rutinoside) draw attention due to healthful bioactivities such as antiproliferative, antioxidant, anti-iflammatory. However, isoquercetin exhibits the highest bioavailability, which varies according to the type of sugar moiety. Rutin is the most common flavonoid in plant resources, especially in jujube leaves which are the waste of food industry. To increase the availability of isoquercetin, the enzymatic biotransformation of isoquercetin from rutin in the jujube leaf extract using hesperidinase from Aspergillus niger was optimized. Hesperidinase is an enzyme complex containing ฮฑ-L-rhamnosidase and ฮฒ-D-glucosidase activities. Employing response surface methodology (RSM), the isoquercetin yield was optimized concerning the temperature (40~60ยฐC, X1) time (24~72 h, X2) and pH (2~6, X3). The second-order polynominal model was developed by experiments based on Boc-behnken design containing 15 experimental runs with three replicates at the center point. The coefficient (R2) and p-value of response surface regression equation for isoquercetin yield were 0.93 and 0.01, respectively. The results showed the statistical significance. Consequently, the optimum condition was predicted at stationary point as to produce 2.65 mg/mL of isoquercetin by processing at 47.3ยฐC, 52.16 h, and under pH 5.31. The verification of the model was carried out at the optimal conditions. The experimental value of 2.57 mg/mL of isoquercetin showed good agreement with the predicted one. These results might provide important information for utilization of jujube leaf as a waste in the food industry.
From the optimization study, one interesting phenomenon was observed. Under various treatment conditions, the bioconversion of isoquercetin from rutin (ฮฑ-L-rhamnosidase activity) was well-performed but the accumulation of quercitin (ฮฒ-D-glucosidase activity) was not. A further study was carried out to ensure the cause of the loss of ฮฒ-D-glucosidase activity of hesperidinase whether it is affected by enzyme kinetics or possible enzyme inhibitor. Firstly, to examine the effect of enzyme kinetics, enzymatic biotransformation was conducted at 40ยฐC and pH 3.8 with enzyme concentration ranging from 0.03125 mg/mL to 160.0 mg/mL for 24, 48 and 72 h. Regardless of reaction time, quercetin was not produced in the concentration of enzyme below 5 mg/mL, while the activity of rhamnosidase was observed. The esculin hydrolysis test was conducted by phenolic compounds to appraise whether it is competitive inhibition or not. Secondly, to evaluate the existence of possible inhibitors, jujube leaf extracts with various concentrations (0 โ 20%) were mixed with 0.5 mM of 4-nitrophenyl ฮฒ-D-glucospyranoside solution containing 0.3 unit/mL of ฮฒ-D-glucosidase from Almonds. The Hanes-Woolf plot showed non-competitive inhibition. Therefore, these results strongly suggested that certain components in the jujube leaf extract act like an inhibitor of ฮฒ-d-glucosidase. Further study is necessary to identify and confirm the possible inhibitor.Contents..................................................................... ะ
LIST OF TABLES........................................................ โ
ฃ
LIST OF FIGURES........................................................โ
ค
Abstract .....................................................................1
Part 1...........................................................................4
I. INTRODUCTION.........................................................5
II. MATERIALS AND METHODS.....................................10
2.1. Chemicals and reagents .......................................10
2.2. Jujube leaf extract ................................................10
2.3. Enzymatic biotransformation...................................11
2.3.1. Effect of enzyme concentration ...........................11
2.3.2. Effect of enzyme reacting time ............................12
2.3.3. Effect of pH .......................................................12
2.3.4. Effect of enzyme reaction temperature .................12
2.4. Analytical methods ...............................................13
2.5. Response surface methodology (RSM) ...................15
III. RESULTS AND DISCUSSION.....................................17
3.1. Effect of the concentration of enzyme ......................17
3.2. Effect of the time....................................................19
3.3. Effect of the pH .....................................................21
3.4. Effect of the reaction temperature ............................23
3.5. Response surface methodology (RSM) ...................25
Part 2 ........................................................................31
I. INTRODUCTION........................................................32
II. MATERIALS AND METHODS.....................................34
2.1. Chemicals and reagents .......................................34
2.2. Verification of existence of ฮฒ-D-glucosidase inhibitor .....................................................................34
2.3. Analysis of phenolic compounds ............................34
2.4. Esculin hydrolysis test .........................................34
2.5. Enzyme kinetics ...................................................37
2.7. Analysis of metal ions............................................38
III . RESULTS AND DISCUSSION .........,,,,,,,...................39
3.1. Verification of existence of ฮฒ-D-glucosidase inhibitor .....................................................................39
3.2. Phenolic compound in the jujube leaf extract ...........41
3.3. Enzyme kinetics ...................................................44
3.4. Analysis of metal ions ...........................................46
IV. CONCLUSIONS......................................................48
V. References.............................................................50
โ
ฅ. ๊ตญ๋ฌธ์ด๋ก ...............................................................54
LIST OF TABLES
Table 1. Instrument and operating conditions for HPLC analysis.....................................................................14
Table 2. Central composite design for optimization of the enzyme reaction condition of isoquercetin from jujube leaf extracts .....................................................................16
Table 3. Analysis of variance for isoquercetin as linear, quadratic term and interactions on response variables ...................................................................27
Table 4. Analysis of variance of the factors for isoquercetin ...............................................................28
Table 5. Predicted maximum values of isoquercetin, the response variables of jujube leaf extracts treated by hesperidinase ............................................................30
Table 7. Operating condition for HPLC to analysis phenolic compounds ...............................................................36
Table 8. Analysis the metal ions, which is famous non-competitive inhibitors ..................................................47
LIST OF FIGURES
Figure 1. Biotransformation of rutin to isoquercetin and quercetin by hesperidinase............................................7
Figure 2. The effect of hesperidinase concentration on the flavonoid yields (Alphabets represent Duncan's grouping). ..................................................................18
Figure 3. The effect of enzyme reaction time on the flavonoid yields...........................................................20
Figure 4. The effect of the pH on the enzymatic biotransformation (Alphabet is meaning Duncans grouping). .................................................................22
Figure 5. The effect of treatment temperature on the concentration of products (rutin, isoquercetin, quercetin). (Alphabet is meaning Duncans grouping)......................24
Figure 6. Response surface plot showing the effect of temperature, time and pH on amount of isoquercetin in jujube leaf extracts treated by hesperidinase ............................................................30
Figure 7. The effect of enzyme concentration of the concentration of products. The samples were taken every 24 h for 3 days. The treatment time of a, b, and c were 24, 48, and 72 h, respectively............................................40
Figure 8. Analysis of phenolic compounds for getting the fractions from jujube leaf extracts. ...............................42
Figure 9. Esxulin hydrolysis test. Peak points, which had phenolic compounds, were 9,10, 14, 15, 35, 45, 47, 49, 53, 57, 58, 60, and 76. However, the inhibition activity was occurred at 28, 29, 30, 34, 39, and 41. This section was from 5.5 min to 75 min.................................................43
Figure 10. The ratio of jujube leaf extracts were increased from 0% to 20%. The enzyme concentration was fixed on 0.3 unit/mL. (a) is Michaelis-Menten plot. (b) is Hanes-Woolf plot. ................................................................45Maste