9 research outputs found

    ์ „๊ธฐ์  ์‘์šฉ ๋ฐ ๋ฐ”์ด์˜ค์„ผ์„œ ์ ์šฉ์„ ์œ„ํ•œ ๋ฐ”๋‚˜๋“ ์‚ฐํ™”๋ฌผ์—์„œ ๊ธˆ์†-์ ˆ์—ฐ์ฒด ์ „์ด๋ฅผ ์‚ฌ์šฉํ•œ ์†Œ์ž ์—ฐ๊ตฌ

    No full text
    Doctor๊ธ‰๊ฒฉํ•œ ๊ธˆ์†-์ ˆ์—ฐ์ฒด ์ƒ์ „์œ„๋ฅผ ์ผ์œผํ‚ค๋Š” ์–‘์ž๋ฌผ์งˆ๋“ค์€ ๋ฏธ๋ž˜ ์ „์ž๊ณตํ•™ ๋ถ„์•ผ์—์„œ ๋‹ค์–‘ํ•œ ์ž ์žฌ์  ์‘์šฉ์ด ๊ฐ€๋Šฅํ•˜์—ฌ ๋งŽ์€ ๊ด€์‹ฌ์„ ๋ฐ›๊ณ ์žˆ๋‹ค. ํŠนํžˆ, ์ „๊ธฐ์  ์ƒ์ „์œ„์— ์žˆ์–ด์„œ๋Š” ์—ฌ๋Ÿฌ ์ƒ๋“ค์˜ ๊ฒฝ์Ÿ์ ์œผ๋กœ ์ž‘์šฉํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์™ธ๋ถ€์ž๊ทน์— ์˜ํ•ด ๊ธฐ์กด ์ƒ์ด ๋‹ค๋ฅธ ์ƒ์œผ๋กœ ๊ฐ‘์ž๊ธฐ ๋ณ€ํ•˜๋ฉด์„œ ๊ธ‰๊ฒฉํ•œ ์ „๊ธฐ์  ๋ณ€ํ™”๋ฅผ ์ผ์œผํ‚ค๊ฒŒ ๋œ๋‹ค. ์ด๋Ÿฌํ•œ ๋‹ค์–‘ํ•œ ์™ธ๋ถ€ ์ž๊ทน ์ค‘์—์„œ ์™ธ๋ถ€์—์„œ ์ธ๊ฐ€๋œ ์ „์••์ด๋‚˜ ์›์ž ๊ฒฐํ•จ์€ ์ƒ๊ด€ ์‚ฐํ™”๋ฌผ์˜ ์ „๊ธฐ์  ์ƒ์ „์ด์— ๋งค์šฐ ํฐ ์˜ํ–ฅ์„ ์ฃผ๋Š” ๊ฒƒ์œผ๋กœ ์ž˜ ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ์ด์™€ ๊ด€๋ จํ•˜์—ฌ, ์ด ๋…ผ๋ฌธ์€ ์ „๊ธฐ์  ์‘์šฉ ๋ฐ ๋ฐ”์ด์˜ค์„ผ์„œ๋กœ์˜ ์ ์šฉ์„ ์œ„ํ•ด ๋ฐ”๋‚˜๋“˜ ์‚ฐํ™”๋ฌผ์—์„œ์˜ ๊ธˆ์†-์ ˆ์—ฐ์ฒด ์ƒ์ „์ด๋ฅผ ์กฐ์ ˆํ•œ ์†Œ์ž ์—ฐ๊ตฌ์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ๋‹ค. ์ฒซ๋ฒˆ์งธ ์—ฐ๊ตฌ ์ฃผ์ œ๋Š” ์ฑ„๋„์ธต ๋‚ด๋ถ€์— ๊ธˆ์† ๋‚˜๋…ธ ์ž…์ž๋ฅผ ์‚ฝ์ž„ํ•จ๊ณผ ๋™์‹œ์— ๋‹จ๊ฒฐ์ •๊ณผ ๊ฐ™์€ ํ’ˆ์งˆ์˜ VO2 ์ฑ„๋„์ธต์„ ๊ฐ€์ง€๋Š” Mott ์Šค์œ„์น˜๋ฅผ ๊ตฌ์ถ•ํ•˜์—ฌ ๊ธˆ์† ๋„๋ฉ”์ธ์˜ ์ค€์•ˆ์ •์„ฑ์„ ์กฐ์ ˆํ•˜๊ณ  ๋„คํŠธ์›Œํฌ ์—ฐ๊ฒฐ ํ˜„์ƒ์„ ์ด‰์ง„์‹œํ‚ค๋Š” ๊ฒƒ์— ๋Œ€ํ•œ ๊ฒƒ์ด๋‹ค. ์ด ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด, TiO2 ๋‹จ๊ฒฐ์ • ๊ธฐํŒ ํ‘œ๋ฉด์— ๋ฐฑ๊ธˆ ๋‚˜๋…ธ ์ž…์ž๋ฅผ ๋„ํฌํ•œ ํ›„ VO2 ๋ฐ•๋ง‰ ์ƒ์„ฑ์„ ์ง„ํ–‰ํ•ด๋„ ๋ฐฑ๊ธˆ ์ž…์ž์— ๊ฐ€๋ ค์ง€์ง€ ์•Š๊ณ  ๋…ธ์ถœ๋œ TiO2 ๋‹จ๊ฒฐ์ • ๊ธฐํŒ ํ‘œ๋ฉด์—์„œ ์„ ํƒ์ ์ธ VO2 ๋ฐ•๋ง‰์˜ ํ•ต์ด ํ˜•์„ฑ๋˜๋Š” ๊ฒƒ์„ ์ถ”์ธกํ•  ์ˆ˜ ์žˆ์—ˆ์œผ๋ฉฐ, VO2 ๋ฐ•๋ง‰์ด ๋ฐฑ๊ธˆ ๋‚˜๋…ธ ์ž…์ž๋ฅผ ๋ฎ์œผ๋ฉฐ ์ธก๋ฉด ์„ฑ์žฅ์„ ์ผ์œผ์ผœ์„œ ๋ฐ•๋ง‰ ๋‚ด๋ถ€์— ๊ฒฐํ•จ์ด ๊ฑฐ์˜ ์—†๋Š” ๋‹จ๊ฒฐ์ •๊ณผ ์œ ์‚ฌํ•œ ์ดˆ๊ณ ํ’ˆ์งˆ์˜ VO2 ๋ฐ•๋ง‰์„ ํ˜•์„ฑํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋˜ํ•œ, ์ด๋Ÿฌํ•œ ๋ฐฑ๊ธˆ ๋‚˜๋…ธ ์ž…์ž ๋‚ด์žฅํ˜• VO2๋ฅผ ์‚ฌ์šฉํ•œ Mott ์Šค์œ„์น˜๋Š” ๋ฌธํ„ฑ ์ „์••์ด ๋‚ฎ์•„์ง€๋Š” ํšจ๊ณผ๊ฐ€ ๋ฐœ์ƒํ•˜์—ฌ ์†Œ๋น„์ „๋ ฅ์„ ์ ˆ๋ฐ˜์œผ๋กœ ๊ฐ์†Œ์‹œํ‚ฌ ์ˆ˜ ์žˆ์—ˆ์œผ๋ฉฐ, ์ž‘๋™ ์ „์••์—์„œ ๋„คํŠธ์›Œํฌ ์—ฐ๊ฒฐํ˜„์ƒ์œผ๋กœ ์ƒ์„ฑ๋œ ๊ธˆ์† ์ „๋„ ๊ฒฝ๋กœ๋ฅผ 33.3๋ฐฐ ๋” ์˜ค๋ž˜ ๊ธฐ์–ตํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋“ค์€ ์ „๊ธฐ์ ์ธ ์ƒ์ „์ด ํ˜„์ƒ์˜ ๊ฐœ๋ฐœ, ์—๋„ˆ์ง€ํšจ์œจ์„ ๋†’์ธ ๋‹ค์–‘ํ•œ ์†Œ์ž ๊ธฐ์ˆ ์˜ ํ™•์žฅ, ๊ทธ๋ฆฌ๊ณ  ์–‘์ž ๋ฌผ์งˆ์„ ์‚ฌ์šฉํ•œ ๋น„๋…ผ๋ฆฌํ˜• ์—ฐ์‚ฐ (๋‡Œ๋ฅผ ๋ชจ๋ฐฉํ•œ ์—ฐ์‚ฐ ์ฒ˜๋ฆฌ ๋ฐฉ์‹) ๊ธฐ์ˆ  ๊ฐœ๋ฐœ์— ์žˆ์–ด์„œ ๊ธˆ์† ์ „๋„ ๊ฒฝ๋กœ๋ฅผ ํ˜•์„ฑํ•˜๋Š” ๋„๋ฉ”์ธ์˜ ๊ธฐํ•˜ํ•™์  ๋ฐฐ์—ด์„ ๊ตฌ์ถ•ํ•˜๋Š”๋ฐ ํ•„์ˆ˜์ ์ธ ์ „๋žต์„ ์‹œ์‚ฌํ•œ๋‹ค. ๋‘๋ฒˆ์งธ ์—ฐ๊ตฌ ์ฃผ์ œ๋Š” ์™„์ „ ๊ณ ์ฒดํ˜• ํŠธ๋žœ์ง€์Šคํ„ฐ์— ์ €์ „์•• ๊ฒŒ์ดํŠธ ์ „์œ„๋ฅผ ๊ฐ€ํ•˜์—ฌ VO2 ๋ฐ•๋ง‰์˜ ์ „๊ธฐ์ „๋„๋„๋ฅผ ๊ฐ€์—ญ์ ์ด๋ฉด์„œ ๋งค์šฐ ํฐ ํญ์œผ๋กœ ์ œ์–ดํ•œ ๊ฒƒ์— ๋Œ€ํ•œ ๊ฒƒ์ด๋‹ค. ์ด ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด, VO2 ๋ฐ•๋ง‰์„ ์ „๊ธฐ์ „๋„์ œ์–ด์ธต์œผ๋กœ ์‚ฌ์šฉํ•œ ์™„์ „ ๊ณ ์ฒด ํŠธ๋žœ์ง€์Šคํ„ฐ๋ฅผ ๊ตฌํ˜„ํ•˜์˜€์œผ๋ฉฐ, ๊ณ ์ฒด ์ƒํƒœ์˜ ์ˆ˜์†Œ์ด์˜จ ์ „๋„์ฒด๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ VO2 ๋ฐ•๋ง‰ ๋‚ด๋ถ€๋กœ ์ˆ˜์†Œ์ด์˜จ์„ ๊ฐ€์—ญ์ ์œผ๋กœ ์ฃผ์ž…ํ•˜์—ฌ ๊ธˆ์†-์ ˆ์—ฐ์ฒด ์ƒ์ „์ด๋ฅผ ์œ ๋„ํ•˜์˜€๋‹ค. ๋˜ํ•œ, ๊ฒŒ์ดํŠธ ์ „์••์˜ ํฌ๊ธฐ์™€ ๋ฐฉํ–ฅ์„ ๋‹ฌ๋ฆฌํ•˜์—ฌ VO2 ๋ฐ•๋ง‰ ๋‚ด๋ถ€์˜ ์ˆ˜์†Œ์ด์˜จ ๋†๋„๋ฅผ ์กฐ์ ˆํ•˜์˜€์œผ๋ฉฐ, ์ €์ „์••์—์„œ๋Š” ์ ˆ์—ฐ์ฒด์—์„œ ๊ธˆ์†์œผ๋กœ์˜ ์ƒ์ „์ด๋ฅผ, ๊ณ ์ „์••์—์„œ๋Š” ์ ˆ์—ฐ์ฒด โ†’ ๊ธˆ์† โ†’ ์ ˆ์—ฐ์ฒด๋กœ์˜ 2๋‹จ๊ณ„ ์ƒ์ „์ด๋ฅผ ์„ธ๊ณ„์ตœ์ดˆ๋กœ ๊ตฌํ˜„ํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒŒ์ดํŠธ ์ „์•• ์กฐ์ ˆ์„ ํ†ตํ•œ ์ˆ˜์†Œ์ด์˜จ ์ฃผ์ž… ์ œ์–ด๋Š” VO2 ๋ฐ•๋ง‰ ๋‚ด๋ถ€์˜ ์‚ฐ์†Œ ์›์ž ๊ฒฐ์† ํ˜„์ƒ์„ ์ผ์œผํ‚ค์ง€ ์•Š์œผ๋ฉด์„œ๋„ ๊ฐ•๋ ฅํ•˜๊ณ  ํšจ์œจ์ ์ธ ์ „๊ธฐ์ „๋„๋„ ๋ณ€ํ™”๋ฅผ ๋งŒ๋“ค์–ด๋‚ผ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ์ˆ˜์†Œ์ด์˜จ ์ฃผ์ž… ์ œ์–ด๋ฅผ ํ†ตํ•œ ์ „๊ธฐ์ ์ธ ์ƒ์ „์ด ํ˜„์ƒ์€ ์ „์ž-๊ฒฉ์ž ์ƒํ˜ธ์ž‘์šฉ์„ ์ผ์œผํ‚ค๊ธฐ ๋•Œ๋ฌธ์— ๋ฌผ์งˆ์˜ ๊ฒฐ์ •๊ตฌ์กฐ์ ์ธ ์ธก๋ฉด์—์„œ VO2 ๋ฐ•๋ง‰์˜ ๊ฒฉ์ž ์ƒ์ˆ˜๋ฅผ ์•ฝ 7 % ์ฆ๊ฐ€์‹œ์ผœ ๊ฒฉ์ž ๊ตฌ์กฐ๋ฅผ ๋งค์šฐ ํฐ ํญ์œผ๋กœ ํŒฝ์ฐฝ์‹œ์ผฐ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋“ค๋กœ ์ƒ๊ด€๊ด€๊ณ„ ์‚ฐํ™”๋ฌผ์ธ VO2 ์˜ ์ „์ž๊ตฌ์กฐ์ ์ธ ์ธก๋ฉด์—์„œ ์ˆ˜์†Œ์ด์˜จ์˜ ์ฃผ์ž…์ด ์–ด๋–ค ์—ญํ• ์„ ํ•˜๋Š”์ง€ ๋ช…ํ™•ํžˆ ๊ทœ๋ช…ํ•˜์˜€์œผ๋ฉฐ. ์ด์˜จ-์ „์ž ๊ฒฐํ•ฉ ํ˜„์ƒ์„ ์ด์šฉํ•œ ์ƒˆ๋กœ์šด ์œ ํ˜•์˜ ์™„์ „ ๊ณ ์ฒด Mott ํŠธ๋žœ์ง€์Šคํ„ฐ๋ฅผ ๊ตฌํ˜„ํ•˜์˜€๋‹ค. ์„ธ๋ฒˆ์งธ ์—ฐ๊ตฌ ์ฃผ์ œ๋Š” ๋ฐ”์ด์˜ค์„ผ์„œ ์‘์šฉ์— ๊ด€ํ•œ ๊ฒƒ์ด๋‹ค. ์ด ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด, GDH ํšจ์†Œ์™€ ์œตํ•ฉํ•œ VO2 ๊ธฐ๋ฐ˜์˜ ๋ฐ”์ด์˜ค์„ผ์„œ๋ฅผ ์ œ์ž‘ํ•˜๊ณ  ๊ธ€๋ฃจํƒ€๋ฉ”์ดํŠธ ๊ฒ€์ถœ์— ์žˆ์–ด์„œ ๊ถ๊ทน์ ์ธ ์„ฑ๋Šฅ์„ ๋‹ฌ์„ฑํ•˜์˜€๋‹ค. ๋ณธ ๋ฐ”์ด์˜ค์„ผ์„œ์—์„œ๋Š” SiO2 ๋ฐ•๋ง‰์„ ์ค‘๊ฐ„ ์—ฐ๊ฒฐ์ฒด๋กœ ์‚ฌ์šฉํ•˜์—ฌ ๋ฐ•๋ง‰ํ˜• VO2 ์ฑ„๋„์ธต๊ณผ GDH ํšจ์†Œ๋ฅผ ๊ฒฐํ•ฉ์‹œ์ผฐ์œผ๋ฉฐ, GDH ํšจ์†Œ์˜ ํŠน์ˆ˜ ํ™œ์„ฑ ๋ถ€์œ„๋ฅผ ํ†ตํ•ด ๊ธ€๋ฃจํƒ€๋ฉ”์ดํŠธ๋ฅผ ๋‹ค๋ฅธ ์‹ ๊ฒฝ ์ „๋‹ฌ ๋ฌผ์งˆ๋กœ๋ถ€ํ„ฐ ๊ตฌ๋ณ„ํ•ด ๋‚ผ ์ˆ˜ ์žˆ์—ˆ๋‹ค. GDH ํšจ์†Œ๋Š” ๊ธ€๋ฃจํƒ€๋ฉ”์ดํŠธ๋ฅผ ๋ถ„ํ•ดํ•˜๋Š” ๊ณผ์ •์—์„œ ๋ถ€์‚ฐ๋ฌผ๋กœ ์ˆ˜์†Œ์ด์˜จ์„ ์ƒ์„ฑํ•˜๋Š”๋ฐ, SiO2 ๋ฐ•๋ง‰์ธต์„ ํ†ตํ•ด ์ˆ˜์†Œ์ด์˜จ์ด VO2 ์ฑ„๋„์ธต์œผ๋กœ ์ „๋‹ฌ๋˜์–ด ์ˆ˜์†Œ์ด์˜จ ๋„ํ•‘ ํ˜„์ƒ์„ ์ผ์œผํ‚ค๊ฒŒ ๋œ๋‹ค. ์ด๋Ÿฌํ•œ ์ „๋ฐ˜์ ์ธ ๊ธ€๋ฃจํƒ€๋ฉ”์ดํŠธ ๊ฒ€์ถœ ๊ณผ์ •์€ ๋งค์šฐ ๋น ๋ฅธ ์†๋„๋กœ ์ง„ํ–‰๋˜๋ฉฐ, ์ˆ˜์†Œ์ด์˜จ ๋„ํ•‘ ํ˜„์ƒ์œผ๋กœ ์ธํ•œ VO2 ์ฑ„๋„์ธต์˜ ์ „๊ธฐ์ „๋„๋„ ๋ณ€ํ™”๊ฐ€ 10 ms ์ด๋‚ด์˜ ๋งค์šฐ ์งง์€ ์‹ ํ˜ธ ์‘๋‹ต ๊ฐ„๊ฒฉ์—์„œ๋„ ์•ฝ 2 ๋งŒ ๋ฐฐ์˜ ์ „๋ฅ˜๋น„ ๋ณ€ํ™” (Imax/I0 ~ 19,089 %) ๋กœ ๋‚˜ํƒ€๋‚จ์„ ๊ฐ์ง€ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ธ€๋ฃจํƒ€๋ฉ”์ดํŠธ ๊ฒ€์ถœ ๊ณผ์ •์—์„œ ๋‚˜ํƒ€๋‚œ VO2 ์ฑ„๋„์ธต์˜ ์ „๊ธฐ์ „๋„๋„ ๋ณ€ํ™”๋Š” ๊ฐ€์†๊ธฐ ๊ธฐ๋ฐ˜ ๋ถ„์„๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ๊ฒฉ์ž ๊ตฌ์กฐ ํŒฝ์ฐฝ, ๋ฐ”๋‚˜๋“์˜ L-๋‹จ๊ณ„ ์ „์ž ์ค€์œ„์˜ ๋ณ€ํ™”, ์‚ฐ์†Œ์˜ K-๋‹จ๊ณ„ ์ „์ž ์ค€์œ„์˜ ๋ณ€ํ™”๊ฐ€ ๋‚˜ํƒ€๋‚˜๋ฏ€๋กœ ์ˆ˜์†Œ์ด์˜จ ๋„ํ•‘ ๋•Œ๋ฌธ์— HxVO2 ๊ฐ€ ํ˜•์„ฑ๋œ ๊ฒƒ์ž„์„ ํ™•์ธํ•˜์˜€์œผ๋ฉฐ TOF-SIMS ๋กœ ๊นŠ์ด ๋ฐฉํ–ฅ ์›์†Œ ๋ถ„์„์„ ํ†ตํ•ด ์‹ค์ œ๋กœ ๊ธ€๋ฃจํƒ€๋ฉ”์ดํŠธ ๊ฒ€์ถœ ํ›„ ์ˆ˜์†Œ์›์ž๊ฐ€ VO2 ์ฑ„๋„์ธต์œผ๋กœ ๋„ํ•‘ ๋œ ๊ฒƒ์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ์ตœ์ข…์ ์œผ๋กœ, ์‹ค์ œ ์ฅ์˜ ๋‡Œ ์กฐ์ง์„ ์‚ฌ์šฉํ•œ ์ฒด์™ธ ์‹คํ—˜์„ ํ†ตํ•ด์„œ VO2 ๊ธฐ๋ฐ˜์˜ ๋ฐ”์ด์˜ค์„ผ์„œ๊ฐ€ ๊ณ ์„ฑ๋Šฅ ๊ธ€๋ฃจํƒ€๋ฉ”์ดํŠธ ์„ผ์„œ๋กœ์„œ ์ž‘๋™๋  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ฃผ์–ด VO2 ๊ธฐ๋ฐ˜ ์ „๊ธฐ ์žฅ์น˜์˜ ์ƒˆ๋กœ์šด ํ™œ์šฉ ๋ฐฉ์•ˆ์„ ์ œ์‹œํ•˜์˜€๋‹ค.Quantum materials featuring an abrupt metal-insulator transition have fascinated researchers for their variety of potential applications in future electronics. Due to the extreme sensitivity of the electronic phase transition between competing phases, a subtle perturbation by external stimuli can abruptly transform an existing phase into a different electronic phase, leading to steep modulation of the electrical properties. Among the various stimuli, external voltages or extrinsic atomic defects strongly influence the electric phase transition of correlated oxides. In this regards, this dissertation focuses on the modulation of the metal-insulator phase transition of VO2 as electrical and biosensor applications. The first topic is about the modulation of percolation and metastability of switchable metallic domains in single-crystal-like VO2 Mott switches by using embedded metallic nanoparticles. Threshold switching, which is observed in quantum materials featuring an electrically fired insulator-to-metal transition, have garnered strong interest for potential applications to resolve the unavoidable bottleneck in the current electronic devices. Mott threshold switches call for delicate control of the percolative dynamics of electrically switchable domains on a nanoscale. A new approach to efficiently percolate metallic domains is required to facilitate an electrically triggered insulator-to-metal transition in threshold switches. In this dissertation, voltage-triggered percolation and metastability of switchable metallic domains was enhanced by embedded metallic NPs that serve as โ€˜stepping-stonesโ€™ in a switchable epitaxial VO2 matrix. . The VO2 films in Pt-NP-VO2 system were single-crystal-like grown on Pt-embedded TiO2 substrates through selective nucleation and lateral overgrowth. Significantly, the power consumption of the Pt-NPs-VO2 Mott switch was reduced by half in consequence of the threshold voltage reduction. Moreover, the switch offers 33.3 times longer memorization of preformed threshold metallic conduction path (i.e., firing) in the VO2 film. These results provide an essential strategy to utilize the geometric development of switchable domains in electrically turned-on transition and possible applications for energy-efficient switches and non-Boolean computing using quantum materials. The second topic is about massive and reversible conductance modulation in a VO2 channel by applying gate bias VG at low voltage in all-solid-state electronic devices. The use of gate bias to control electronic phases in VO2, an archetypical correlated oxide, offers a powerful method to probe their underlying physics, as well as for the potential to develop novel electronic devices. Up to date, purely electrostatic gating in 3-terminal Mott transistor showed the limited electrostatic gating efficiency due to insufficiently induced carrier density and short electrostatic screening length. In this dissertation, all-solid-state three-terminal devices with VO2 channels were achieved by exploiting the reversible H+-induced MI transition. By using solid-state proton (H+) conductors to modulate H+ concentration in VO2, we achieve gate-induced reversible insulator-to-metal (I-to-M) phase transition at low voltage, and unprecedented two-step insulator-to-metal-to-insulator (I-to-M-to-I) phase transition at high voltage. VG strongly and efficiently injects H+ into the VO2 channel without creating oxygen deficiencies; this H+-induced electronic phase transition occurs by giant modulation (~ 7 %) of out-of-plane lattice parameters as a result of electron-lattice coupling. The results clarify the role of H+ on the electronic state of the correlated phases, and demonstrate new types of all-solid-state Mott transistor that use ionic/electronic coupling. The third topic is about biosensor applications. To utilize the novel correlared properties in oxide system as bio-conjugated functionalities, ability to detect biomarkers that allow to diagnose diseases is required. The representative approch is combination with biomarker-detectable enzymes. In this dissertation, an ultimate-performance of glutamate detection was achieved by GDH enzyme conjugated VO2-based biosensor. The SiO2 transmitter combines a GDH enzyme that clearly distinguishes glutamate and a highly sensitive VO2 channel that can be changed large conductance changes by detecting glutamate. The GDH enzyme recognizes glutamate from other neurotransmitters through special active site and produces protons during glutamate digestion. The protons, which generated from glutamate digestion as a byproduct, move into VO2 channel by passing through SiO2 transmitter layer and trigger 2-order of magnitude large change in current ratio (Imax/I0 ~ 19,089 %) within ~10 ms of very short response time. Glutamate-detected current ratio changes in VO2 channel was caused by proton doping in VO2 film. In synchrotron-based analysis, glutamate detected VO2 films show large lattice expansion that is larger than lattice expansion by intrinsic phase transition and electronic structural changes indicate that pristine VO2 phase changed to proton doped HxVO2 phase with V L edge shift with changing O K edge. Due to the high performance and in vitro results, our VO2-based biosensor suggests a novel application of the VO2-based electric device
    corecore