11 research outputs found

    ์ƒ๋ฆฌํ™œ์„ฑ ์ €๋ถ„์ž ํ™”ํ•ฉ๋ฌผ์˜ ๋ฐœ๊ตด๊ณผ ์„ธํฌ ์ด๋ฏธ์ง•์„ ํ†ตํ•œ ์ž‘์šฉ ๊ธฐ์ „์˜ ์ดํ•ด

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ์ƒ๋ฌผ๋ฌผ๋ฆฌ ๋ฐ ํ™”ํ•™์ƒ๋ฌผํ•™๊ณผ, 2019. 2. ๋ฐ•์Šน๋ฒ”.Our body has very sophisticated and complex signaling pathways to maintain homeostasis. Therefore, we could understand growth processes based on the knowledge from researches on biological events and improve the quality of life by the suggestion of disease treatment strategies. Among various approaches to understand new biological events, the chemical biology approaches were used in this researches, especially, discovery of bioactive small molecules and visualization of its mode of action by cellular fluorescence imaging for understanding biological phenomena with various aspects. Two biological systems were covered in this dissertation. First, studies about mechanistic target of Rapamycin complex 1 (mTORC1) regulation via Leucyl-tRNA Synthetase (LRS) and Ras-like GTPase D (RagD) protein-protein interaction was described. Three distinct bioactive small molecules were identified by using target-based screening. New aspects on mTORC1 regulation mechanism via LRS-RagD interaction were inferred from the unique activity patterns and biophysical studies of each molecule. Second, the investigation of lipid droplet (LD) reduction mechanism was explained. To identify LD reducing small molecule, image-based LD-monitoring high-contents screening was carried out and the novel LD reduction mechanism study of the hit compound was described. As researches on both mTORC1 regulation via LRS-RagD interaction and LD reduction mechanism are relatively deficient, new results described in this dissertation has greatly contributed to the academic field. Furthermore, it has been confirmed that it is possible to suggest a new disease treatment strategy based on the newly discovered results. Therefore, it is expected to be applied to the medicinal industry as an anti-cancer drug sensitizer and a steatosis attenuating agent.์šฐ๋ฆฌ ๋ชธ์€ ํ•ญ์ƒ์„ฑ์„ ์œ ์ง€ํ•˜๊ธฐ ์œ„ํ•œ ๋งค์šฐ ์ •๊ตํ•˜๊ณ  ๋ณต์žกํ•œ ์‹ ํ˜ธ์ „๋‹ฌ์ฒด๊ณ„๋ฅผ ๊ฐ–์ถ”๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ, ์ƒ์ฒด ๋‚ด ํ˜„์ƒ์„ ์กฐ์ ˆํ•˜๋Š” ์ž‘์šฉ ์›๋ฆฌ๋ฅผ ์—ฐ๊ตฌํ•˜๋ฉด ์ธ์ฒด์˜ ์ƒ์žฅ ๋ฐฉ์‹์„ ์ดํ•ดํ•  ์ˆ˜ ์žˆ๊ณ , ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์งˆ๋ณ‘์˜ ์น˜๋ฃŒ ์ „๋žต์„ ์ œ์‹œํ•จ์œผ๋กœ์จ ์ธ๋ฅ˜์˜ ์‚ถ์˜ ์งˆ์„ ๋†’์ผ ์ˆ˜ ์žˆ๋‹ค. ์ƒˆ๋กœ์šด ์ƒ๋ช… ํ˜„์ƒ์„ ํƒ๊ตฌํ•˜๊ณ  ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•์€ ์—ฌ๋Ÿฌ ๊ฐ€์ง€๊ฐ€ ์žˆ๋Š”๋ฐ, ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ์ƒ๋ฆฌํ™œ์„ฑ ์ €๋ถ„์ž ํ™”ํ•ฉ๋ฌผ์„ ๋ฐœ๊ตดํ•˜๊ณ , ์ด ํ™”ํ•ฉ๋ฌผ์˜ ์ž‘์šฉ ๊ธฐ์ „์„ ์„ธํฌ ์ด๋ฏธ์ง•์„ ํ†ตํ•ด ์‹œ๊ฐํ™”ํ•˜์—ฌ ๋‹ค์–‘ํ•œ ์ธก๋ฉด์—์„œ ์ƒˆ๋กœ์šด ์ƒ๋ช… ํ˜„์ƒ์„ ์ดํ•ดํ•˜๋Š” ํ™”ํ•™์ƒ๋ฌผํ•™์  ์ ‘๊ทผ ๋ฐฉ๋ฒ•์„ ์ด์šฉํ•˜์˜€๋‹ค. ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์—๋Š” ๋‘ ๊ฐ€์ง€์˜ ์ƒ๋ช… ํ˜„์ƒ์„ ์—ฐ๊ตฌ ํ•˜์˜€๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ์„ธํฌ์˜ ์„ฑ์žฅ์„ ์กฐ์ ˆํ•˜๋Š” ์ค‘์š”ํ•œ ๋‹จ๋ฐฑ์งˆ ๋ณตํ•ฉ์ฒด์ธ mechanistic target of Rapamycin complex 1 (mTORC1)์„ ์กฐ์ ˆํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ• ์ค‘ ํ•˜๋‚˜์ธ Leucyl-tRNA Synthetase (LRS)์™€ Ras-like GTPase D (RagD) ๋‹จ๋ฐฑ์งˆ ๊ฐ„์˜ ์ƒํ˜ธ์ž‘์šฉ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ์ด๋‹ค. ํƒ€๊ฒŸ ๊ธฐ๋ฐ˜ ์Šคํฌ๋ฆฌ๋‹์„ ํ†ตํ•ด ์„œ๋กœ ๋‹ค๋ฅธ ์„ธ ๊ฐ€์ง€์˜ LRS-RagD ์ƒํ˜ธ์ž‘์šฉ ์กฐ์ ˆ ๋ฌผ์งˆ์„ ๋ฐœ๊ตดํ•˜๊ณ , ๊ฐ๊ฐ์˜ ํ™”ํ•ฉ๋ฌผ์ด ์ผ์œผํ‚ค๋Š” ๋…ํŠนํ•œ ํ™œ์„ฑ ๋ณ€ํ™” ์–‘์ƒ๊ณผ ์ƒ๋ฌผ๋ฌผ๋ฆฌํ•™ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ LRS-RagD ๋‹จ๋ฐฑ์งˆ๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ์„ ํ†ตํ•œ mTORC1๋ฅผ ์กฐ์ ˆํ•˜๋Š” ์ƒˆ๋กœ์šด ๊ด€์ ์— ๋Œ€ํ•ด ๊ธฐ์ˆ ํ•˜๊ณ  ์žˆ๋‹ค. ๋‘ ๋ฒˆ์งธ๋Š” ์ง€๋ฐฉ ๋Œ€์‚ฌ์— ์ค‘์š”ํ•œ ์„ธํฌ ์†Œ๊ธฐ๊ด€์ธ ์ง€๋ฐฉ ๋ฐฉ์šธ์„ ๊ฐ์†Œ ์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•œ ๋‚ด์šฉ์ด๋‹ค. ์ด๋ฏธ์ง• ๊ธฐ๋ฐ˜ ์Šคํฌ๋ฆฌ๋‹์„ ์ˆ˜ํ–‰ํ•˜์—ฌ ์ง€๋ฐฉ ๋ฐฉ์šธ์„ ๊ฐ์†Œ์‹œํ‚ค๋Š” ์ €๋ถ„์ž ํ™”ํ•ฉ๋ฌผ์„ ๋ฐœ๊ตดํ•˜๊ณ , ์ด ํ™”ํ•ฉ๋ฌผ์˜ ์ž‘์šฉ ๊ธฐ์ „์„ ํƒ๊ตฌํ•˜์—ฌ ๊ธฐ์กด์— ๋ณด๊ณ ๋˜์ง€ ์•Š์€ ์ง€๋ฐฉ ๋ฐฉ์šธ์„ ์ค„์ด๋Š” ์ƒˆ๋กœ์šด ์ž‘์šฉ ๊ธฐ์ „์„ ์—ฐ๊ตฌํ•œ ๋‚ด์šฉ์„ ๊ธฐ์ˆ ํ•˜๊ณ  ์žˆ๋‹ค. LRS-RagD์— ์˜ํ•œ mTORC1์˜ ์กฐ์ ˆ ๋ฐฉ๋ฒ•๊ณผ ์ง€๋ฐฉ ๋ฐฉ์šธ์˜ ๊ฐ์†Œ ์ž‘์šฉ ๊ธฐ์ „์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋Š” ์ƒ๋Œ€์ ์œผ๋กœ ์—ฐ๊ตฌ๊ฐ€ ๋ฏธ์•ฝํ•œ ๋ถ„์•ผ์ด๋ฏ€๋กœ ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์— ๊ธฐ์ˆ ๋œ ์ƒˆ๋กœ์šด ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋Š” ํ•™๋ฌธ์ ์œผ๋กœ ๊ธฐ์—ฌํ•˜๋Š” ๋ฐ”๊ฐ€ ํฌ๋‹ค. ๋” ๋‚˜์•„๊ฐ€, ์ƒˆ๋กœ ๋ฐํ˜€์ง„ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ƒˆ๋กœ์šด ์งˆ๋ณ‘ ์น˜๋ฃŒ ์ „๋žต์„ ์ œ์‹œํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ€๋Šฅ์„ฑ์„ ํ™•์ธํ•˜์˜€์œผ๋ฏ€๋กœ, ํ•ญ์•” ์ฆ๊ฐ์ œ์™€ ์ง€๋ฐฉ์ฆ ์™„ํ™”์ œ๋กœ์„œ์˜ ์˜์•ฝ ์‚ฐ์—…์— ์ ์šฉ์„ ๊ธฐ๋Œ€ํ•˜๊ณ  ์žˆ๋‹ค.Abstract Table of Contents List of Figures List of Table Chapter 1. Introduction 1.1. Chemical biology approaches for comprehension of new biological phenomena 1.1.1. Discovery of bioactive small molecules 1.1.2. Cellular imaging 1.2. mTORC1 pathway and LRS-RagD interaction 1.3. Lipid droplet and autophagy process 1.4. Aims of the dissertation Chapter 2. A new perspective to modulate mTORC1 through LRS-RagD interaction modulators 2.1. Introduction 2.2. Materials and methods 2.3. Results and Discussion 2.3.1. In-house library screening with ELISA-based high-throughput screening system 2.3.2. Possibility to modulate mTORC1 through LRS-RagD perturbation with small molecules 2.3.3. Distinct perturbation of mTORC1 by LRS-RagD inhibition 2.3.4. Different effects on mTORC1 of serum and LRS-RagD interaction 2.3.5. Sensitizing effects to anti-cancer drug 2.4. Conclusion Chapter 3. Discovery of a novel lipid droplet reduction mechanism via lipophagy inducing compound 3.1. Introduction 3.2. Materials and methods 3.3. Results and Discussion 3.3.1. Image-based LD monitoring high-contents screening and Hit compound selection 3.3.2. Selective autophagy, especially lipophagy activation 3.3.3. Ubiquitination of LD surface proteins 3.3.4. Relationship with Endoplasmic reticulum (ER) stress 3.3.5. LD reduction in drug induced steatosis in vitro model 3.4. Conclusion References Abstract in KoreanDocto

    Adaptive Channel Estimation Techniques for Massive MIMO Systems

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2015. 2. ์ด์ •์šฐ.Wireless communication systems have been required to transmit a large volume of data more rapidly, and thus wireless communication systems require the utilization of more efficient bandwidth and larger channel capacity. Recently, extending multiple input multiple output (MIMO) system on a very large scale by using a myriad number of antennas at the base station was introduced. This method was so that the frequency efficiency can be greatly increased. Massive MIMO system can maximize frequency efficiency by applying a precoding scheme using the downlink channel state information (CSI) to the transmission data at the base station through the usage of large number of antennas. Time-division duplex (TDD) systems have been mainly studied as they can easily obtain the CSI by using the channel reciprocity between uplink and downlink. In frequency-division duplex (FDD) system, the computational complexity of the downlink channel estimation is proportional to the number of antennas at the base station as the channel reciprocity cannot be used. Therefore, effective channel estimation techniques may have to be studied. In this thesis, novel channel estimation algorithms using some of the adaptive techniques are proposed in a channel model with temporal and spatial correlations. The Kalman filter, known as the optimal channel estimation technique, is impossible to estimate the real-time channel due to matrix operations. When consecutive training signals are transmitted, we proposed time division operation of Kalman filter and normalized least mean square (nLMS) filter to enable channel estimation in real-time. Furthermore, we propose decision feedback nLMS filter which updates the CSI by using correctly decoded data as a training signal during data transmission period. With this approach, the performance can be greatly improved without much increase of the hardware complexity compared to the conventional nLMS filter. Simulation results show the performance of proposed algorithms compared to conventional algorithms in terms of mean square error (MSE) and bit error rate (BER).Abstract........................................................................................................... i Contents........................................................................................................ iii List of Figures.................................................................................................v List of Tables ............................................................................................... vii Chapter 1. Introduction .............................................................................1 Chapter 2. Massive MIMO Systems.........................................................6 2.1. Overview.................................................................................................7 2.2. Achievable rate .......................................................................................8 2.2.1. Point-to-Point MIMO...................................................................8 2.2.2. Multi-User MIMO......................................................................10 2.3. Zero-forcing Precoding Techniques......................................................12 Chapter 3. Channel Estimation Schemes ................................................15 3.1. Adaptive Channel Estimation ...............................................................16 3.1.1. Least Mean Square (LMS) Algorithm .......................................16 3.1.2. Kalman Filter .............................................................................21 3.2. Non-Adaptive Channel Estimation .......................................................26 3.2.1. Least Square (LS) Algorithm.....................................................26 Chapter 4. Practical Channel Estimation for Massive MIMO Systems..29 4.1. System Model .......................................................................................29 4.2. Practical Channel Estimation Techniques.............................................32 4.2.1. Hybrid Channel Estimation........................................................32 4.2.2. Decision Feedback nLMS Channel Estimation..........................36 4.3. Complexity Evaluation .........................................................................38 Chapter 5. Simulation Results.................................................................40 5.1. Simulation Environments......................................................................40 5.2. MSE Performance Evaluation...............................................................42 5.3. BER Performance Evaluation ...............................................................44 5.3.1. Large Temporal Correlation Channel ........................................44 5.3.2. Small Temporal Correlation Channel ........................................46 5.3.3. Delayed Channel Feedback........................................................49 Chapter 6. Conclusions ...........................................................................52 References ....................................................................................................54 ์ดˆ๋ก ..............................................................................................................57Maste

    MONITORING AND ANALYSIS SYSTEM FOR AGGRESSION TRAITS BY MEASURING PSYCHOPHYSIOLOGICAL INDICATOR

    No full text
    ์‹ฌ๋ฆฌ์ƒ๋ฆฌํ•™์  ์ง€ํ‘œ ์ธก์ •์„ ํ†ตํ•œ ๊ณต๊ฒฉ์„ฑ ๋ถ„์„ ๋ฐ ๋ชจ๋‹ˆํ„ฐ๋ง ์‹œ์Šคํ…œ์— ๋Œ€ํ•ด ๊ฐœ์‹œํ•œ๋‹ค. ์‹ฌ๋ฆฌ์ƒ๋ฆฌํ•™์  ์ง€ํ‘œ ์ธก์ •์„ ํ†ตํ•œ ๊ณต๊ฒฉ์„ฑ ๋ถ„์„ ๋ฐ ๋ชจ๋‹ˆํ„ฐ๋ง ์‹œ์Šคํ…œ์€, ์‹ฌ๋ฆฌํ•™์  ๊ณต๊ฒฉ์„ฑ ์ง€ํ‘œ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๋ฅผ ์ƒ์„ฑํ•˜๊ณ , ์ธก์ •๋œ ์ƒ์ฒด ์‹ ํ˜ธ์™€ ์‹ฌ๋ฆฌํ•™์  ๊ณต๊ฒฉ์„ฑ ์ง€ํ‘œ์˜ ์ƒ๊ด€๊ด€๊ณ„์— ๋Œ€ํ•œ ๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ์ œ๊ณตํ•˜๊ณ , ์ƒ๊ธฐ ์ƒ์ฒด ์‹ ํ˜ธ์™€ ์‹ฌ๋ฆฌํ•™์  ๊ณต๊ฒฉ์„ฑ ์ง€ํ‘œ์˜ ์ƒ๊ด€๊ด€๊ณ„์— ๊ธฐ์ดˆํ•˜์—ฌ ์ƒ์ฒด์‹ ํ˜ธ ๊ธฐ๋ฐ˜์˜ ์‹ฌ๋ฆฌํ•™์  ๊ณต๊ฒฉ์„ฑ์˜ ํ•˜์œ„ ํŠน์งˆ์— ๋Œ€ํ•œ ์ •๋Ÿ‰ํ™” ๊ธฐ์ค€์„ ์ƒ์„ฑํ•˜๊ณ , ์ƒ๊ธฐ ์ƒ์ฒด ์‹ ํ˜ธ ๊ธฐ๋ฐ˜์˜ ์‹ฌ๋ฆฌํ•™์  ๊ณต๊ฒฉ์„ฑ์„ ์ง„๋‹จ ๋ฐ ๋ถ„์„ํ•˜๊ณ , ์‹ฌ๋ฆฌํ•™์  ๊ณต๊ฒฉ์„ฑ ์ง„๋‹จ ๊ฒฐ๊ณผ ๋ฐ ๊ณต๊ฒฉ์„ฑ ์™„ํ™” ์†”๋ฃจ์…˜๊ณผ ๊ด€๋ จ๋œ ์ง„๋‹จ ๊ฒฐ๊ณผ๋ฅผ ์ œ๊ณตํ•˜๋Š” ์„œ๋ฒ„ ์Šคํ…Œ์ด์…˜๊ณผ ๋ฐ ๊ณต๊ฒฉ์„ฑ ๋ชจ๋‹ˆํ„ฐ๋ง ์ „์šฉ ํ•ด๋“œ์…‹ํ˜• ๋‡ŒํŒŒ-์‹ฌ์ „๋„ ์ธก์ • ์žฅ์น˜๋ฅผ ํ†ตํ•ด ์‹ฌ์ „๋„ ๋ฐ Fp2 ๋ฐ F8 ์ฑ„๋„์—์„œ ๋‡ŒํŒŒ๋ฅผ ์ธก์ •ํ•˜๊ณ , ์ธก์ •๋œ ๋‡ŒํŒŒ ๋ฐ ์‹ฌ์ „๋„ ์‹ ํ˜ธ๋ฅผ ์ƒ๊ธฐ ์„œ๋ฒ„ ์Šคํ…Œ์ด์…˜์œผ๋กœ ์ „๋‹ฌํ•˜๊ณ  ์ƒ๊ธฐ ์„œ๋ฒ„ ์Šคํ…Œ์ด์…˜์œผ๋กœ๋ถ€ํ„ฐ ์ง„๋‹จ ๊ฒฐ๊ณผ๋ฅผ ์ˆ˜์‹ ํ•˜๋Š” ์œ ์ € ์Šคํ…Œ์ด์…˜์„ ํฌํ•จํ•œ๋‹ค
    corecore