20 research outputs found

    ๋ถˆ์—ฐ์† ๋ณ€์ˆ˜ ์–‘์ž ํ‚ค ๋ถ„๋ฐฐ ์‹œ์Šคํ…œ๊ณผ ๋ถˆ์—ฐ์† ์‹œ๊ฐ„ ์–‘์ž ๊ฑธ์Œ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ

    No full text
    Doctor์–‘์ž ํ‚ค ๋ถ„๋ฐฐ๋Š” ์–‘์ž ์•”ํ˜ธ์— ์†ํ•˜๋Š” ํ•œ ๋ถ„์•ผ๋กœ ์„œ๋กœ ๋ฉ€๋ฆฌ ๋–จ์–ด์ง„ ๋‘ ์‚ฌ๋žŒ์ด ๋น„๋ฐ€ ํ‚ค๋ฅผ ๋‚˜๋ˆ  ๊ฐ–๋Š” ๊ฒƒ์„ ๊ทธ ๋ชฉ์ ์œผ๋กœ ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์–‘์ž ์ •๋ณด ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ๋จผ์ € ์‹ค์šฉํ™”๊ฐ€ ๋  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋˜๋Š” ๊ฒƒ์ด๋ฉฐ, ์–‘์ž ๊ฑธ์Œ์€ ์–‘์ž ์ •๋ณด์— ๋ถ„์•ผ์— ๋งŽ์€ ์‘์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ๊ฐ–๊ณ  ์žˆ๋Š” ๊ฒƒ์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ์–‘์ž ํ‚ค ๋ถ„๋ฐฐ ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•˜์—ฌ ์—ฌ๋Ÿฌ ํ”„๋กœํ† ์ฝœ์„ ์‹คํ—˜์ ์œผ๋กœ ๊ตฌํ˜„ ๋ฐ ๋น„๊ต ํ•˜์˜€์œผ๋ฉฐ, ์–‘์ž ํ‚ค ๋ถ„๋ฐฐ ์‹œ์Šคํ…œ์˜ ์ค‘์š”ํ•œ ๊ตฌ์„ฑ ์š”์†Œ์ธ ์–‘์ž ์ฑ„๋„์— ๋Œ€ํ•ด ์—ฐ๊ตฌํ•˜์˜€๊ณ , ๋งˆ์ง€๋ง‰์œผ๋กœ ๋‹ค ์ฐจ์› ์–‘์ž ๊ฑธ์Œ์— ๋Œ€ํ•ด ์—ฐ๊ตฌํ•˜์˜€๋‹ค.๋จผ์ € ์˜ค๋Š˜๋‚  ์ •๋ณด ๋ณด์•ˆ์˜ ์ค‘์š”์„ฑ์„ ๋‚ ๋กœ ์ปค์ง€๊ณ  ์žˆ๋‹ค. ๊ทธ๋ ‡์ง€๋งŒ ํ˜„์žฌ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋Š” ๊ณต๊ฐœํ‚ค ์•”ํ˜ธ๋ฐฉ์‹์˜ ์•”ํ˜ธ๋Š” ์ˆ˜ํ•™์ ์ธ ๊ณ„์‚ฐ์ƒ์˜ ์–ด๋ ค์›€์„ ์ด์šฉํ•˜์—ฌ ๊ทธ ์•ˆ์ „์„ฑ์„ ๋ณด์žฅ ๋ฐ›๊ณ  ์žˆ๋‹ค. ์ด๊ฒƒ์€ ์ƒˆ๋กœ์šด ํšจ์œจ์  ๋ฐฉ์‹์˜ ๊ณ„์‚ฐ๋ฐฉ๋ฒ•์ด๋‚˜ ์–‘์ž ์ปดํ“จํ„ฐ๊ฐ€ ๋‚˜์™€ ์ด๋Ÿฌํ•œ ๊ณ„์‚ฐ์ƒ์˜ ์–ด๋ ค์›€์„ ํ•ด๊ฒฐํ•œ๋‹ค๋ฉด ๊ณต๊ฐœํ‚ค ์•”ํ˜ธ ๋ฐฉ์‹์˜ ์•ˆ์ „์„ฑ์€ ํฐ ์œ„ํ˜‘์„ ๋ฐ›๊ฒŒ ๋œ๋‹ค. ๊ทธ๋ ‡์ง€๋งŒ ์–‘์ž ์•”ํ˜ธ๋Š” ์–‘์ž ๋ฌผ๋ฆฌ์— ๊ธฐ์ดˆํ•˜์—ฌ ๋ฌด์กฐ๊ฑด์ ์ธ ์•ˆ์ „์„ฑ์„ ๋ณด์žฅ ๋ฐ›์•„ ํ˜„์žฌ ๋งŽ์€ ๊ณณ์—์„œ ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์–‘์ž ์•”ํ˜ธ์—์„œ ๋‘ ์‚ฌ๋žŒ๊ฐ„์˜ ํ†ต์‹ ์„ ๋‹ค๋ฃจ๋Š” ์–‘์ž ํ‚ค ๋ถ„๋ฐฐ ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•˜๊ณ , ์—ฌ๋Ÿฌ ํ”„๋กœํ† ์ฝœ๋“ค์„ ์‹คํ—˜์ ์œผ๋กœ ๊ตฌํ˜„ ๋ฐ ๋น„๊ต๋ฅผ ํ•˜์˜€๋‹ค.์–‘์ž ํ‚ค ๋ถ„๋ฐฐ ์‹œ์Šคํ…œ์€ ๋ณด๋‚ด๋Š” ์‚ฌ๋žŒ, ๋ฐ›๋Š” ์‚ฌ๋žŒ, ์–‘์ž ์ฑ„๋„ ๊ทธ๋ฆฌ๊ณ  ๊ณ ์ „ ์ฑ„๋„๋กœ ๋‚˜๋ˆŒ ์ˆ˜ ์žˆ๋‹ค. ์ด ์ค‘์—์„œ ์–‘์ž ์ฑ„๋„์€ ์–‘์ž ์ƒํƒœ๊ฐ€ ์ง€๋‚˜๋‹ค๋‹ˆ๋Š” ํ†ต๋กœ์ด๋‹ค. ์–‘์ž ์ƒํƒœ๊ฐ€ ์–‘์ž ์ฑ„๋„์„ ํ†ต๊ณผํ•  ๋•Œ๋Š” ์™ธ๋ถ€์™€์˜ ์ƒํ˜ธ์ž‘์šฉ์œผ๋กœ ์–‘์ž ์ƒํƒœ์˜ ๋ณ€ํ™”๊ฐ€ ์ƒ๊ธธ ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ณ€ํ™”๋ฅผ ์—ฐ๊ตฌํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์–‘์ž ์ฑ„๋„์—์„œ ์ƒ๊ธธ ์ˆ˜ ์žˆ๋Š” ํ˜„์ƒ์„ ๋ฌ˜์‚ฌํ•˜๋Š” ์—ฌ๋Ÿฌ ์–‘์ž ์ž‘์šฉ์„ ์‹คํ—˜์ ์œผ๋กœ ๊ตฌํ˜„ ํ•  ์ˆ˜ ์žˆ์–ด์•ผ ํ•œ๋‹ค. ํ˜„์žฌ๊นŒ์ง€ bit flip, phase flip, bit-phase flip, amplitude damping, phase damping์€ ์™„์ „ํžˆ ๊ตฌํ˜„๋˜์—ˆ์ง€๋งŒ, depolarization์€ ์™„๋ฒฝํ•˜๊ฒŒ ๊ตฌํ˜„๋˜์ง€ ์•Š์•˜๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋“ค์–ด์˜ค๋Š” ์–‘์ž ์ƒํƒœ์— ์ƒ๊ด€์—†์ด depolarization์˜ ์ •๋„๋ฅผ ์—ฐ์†์ ์œผ๋กœ ์กฐ์ ˆ ๊ฐ€๋Šฅํ•œ ์žฅ์น˜๋ฅผ ์ œ์•ˆํ•˜์˜€์œผ๋ฉฐ ๊ทธ๊ฒƒ์˜ ํŠน์„ฑ์ด ์ž˜ ๋‚˜ํƒ€๋‚˜๋Š”์ง€ quantum state tomography์™€ quantum process tomography๋ฅผ ํ†ตํ•ด ํ™•์ธํ•ด๋ณด์•˜๋‹ค.๋‹ค์Œ์œผ๋กœ, ์–‘์ž ํ‚ค ๋ถ„๋ฐฐ ์‹œ์Šคํ…œ์—์„œ BB84์™€ SARG04 ์–‘์ž ํ‚ค ๋ถ„๋ฐฐ ํ”„๋กœํ† ์ฝœ์„ ๊ตฌํ˜„ ํ•˜์˜€์œผ๋ฉฐ ์‹คํ—˜์ ์œผ๋กœ ๋น„๊ตํ•˜์˜€๋‹ค. BB84 ํ”„๋กœํ† ์ฝœ์€ ๊ฐ€์žฅ ์ฒ˜์Œ ์ œ์•ˆ๋˜์—ˆ์œผ๋ฉด ๊ฐ€์žฅ ์ž˜ ์•Œ๋ ค์ง„ ํ”„๋กœํ† ์ฝœ์ด๋‹ค. ์ด ํ”„๋กœํ† ์ฝœ์„ ์™„๋ฒฝํ•˜๊ฒŒ ๊ตฌํ˜„ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋‹จ์ผ ๊ด‘์ž ๊ด‘์›์ด ์žˆ์–ด์•ผ ํ•˜๋Š”๋ฐ, ๊ณ ํšจ์œจ์˜ ๋‹จ์ผ ๊ด‘์ž ๊ด‘์›์˜ ๋ถ€์žฌ๋กœ ์ธํ•˜์—ฌ ์—ฌ๋Ÿฌ ์‹คํ—˜์—์„œ ์•ฝํ•œ ๋ ˆ์ด์ € ํŽ„์Šค๋ฅผ ๋Œ€์‹  ์‚ฌ์šฉํ•˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฐ๋ฐ ์•ฝํ•œ ๋ ˆ์ด์ € ํŽ„์Šค๋Š” ํŽ„์Šค ์•ˆ์— ๋‹ค ๊ด‘์ž๊ฐ€ ๋“ค์–ด๊ฐ€ ์žˆ์„ ํ™•๋ฅ ์ด ์žˆ์–ด ๋„์ฒญ์ž์˜ ๊ด‘์ž ์ˆ˜ ๋ถ„๋ฆฌ ๊ณต๊ฒฉ(PNS attack)์„ ๋ฐ›์„ ์ˆ˜ ์žˆ๋‹ค. ์ด๊ฒƒ์„ ๋ง‰๊ธฐ ์œ„ํ•ด ์ œ์•ˆ๋œ ๊ฒƒ์ด decoy state method์™€ SARG04 ํ”„๋กœํ† ์ฝœ์ด๋‹ค. SARG04 ํ”„๋กœํ† ์ฝœ์€ ์–‘์ž ์ฑ„๋„์„ ์ด์šฉํ•œ ์–‘์ž ํ†ต์‹  ๊ณผ์ •์ด BB84 ํ”„๋กœํ† ์ฝœ๊ณผ ๋™์ผํ•˜๊ณ , ์˜ค์ง ๊ณ ์ „ ์ฑ„๋„์„ ์ด์šฉํ•œ ํ†ต์‹ ๋งŒ์ด ๋‹ค๋ฅด๋‹ค. ์ด๋Ÿฌํ•œ ์ด์œ ๋กœ BB84์™€ SARG04 ํ”„๋กœํ† ์ฝœ์€ ๋™์ผํ•œ ์‹œ์Šคํ…œ์—์„œ ๊ตฌํ˜„ ํ•  ์ˆ˜ ์žˆ๊ณ  ์‹คํ—˜์ ์œผ๋กœ ๋น„๊ตํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋‘ ํ”„๋กœํ† ์ฝœ์„ ๊ฐ๊ฐ ์‹คํ—˜์ ์œผ๋กœ ๊ตฌํ˜„ํ•˜์˜€๊ณ , ๋™์ผํ•œ ์กฐ๊ฑด์—์„œ ๋งŒ๋“ค์–ด์ง€๋Š” ๋น„๋ฐ€ ํ‚ค์˜ ์–‘์˜ ๋น„๊ตํ•ด ๋ณด์•˜๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ ๋น„๋ก SARG04 ํ”„๋กœํ† ์ฝœ์ด BB84 ๋ณด๋‹ค PNS attack์— ์ข€ ๋” ์•ˆ์ „ํ•˜๋‹ค๊ณ  ์•Œ๋ ค์ ธ ์žˆ์ง€๋งŒ, ๊ณต๊ฒฉ์ž์˜ coherent attack์— ๋Œ€ํ•ด์„œ๋Š” BB84๊ฐ€ SARG04๋ณด๋‹ค ๋” ๋งŽ์€ ๋น„๋ฐ€ ํ‚ค๋ฅผ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ์‹คํ—˜์ ์œผ๋กœ ํ™•์ธํ•˜์˜€๋‹ค.BB84์™€ SARG04 ํ”„๋กœํ† ์ฝœ์€ ๋™์ผํ•œ ์–‘์ž ์ƒํƒœ์™€ ์–‘์ž ์ฑ„๋„์„ ์ด์šฉํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ์–‘์ž ์ฑ„๋„์— depolarization ํšจ๊ณผ๊ฐ€ ๋‚˜ํƒ€๋‚ฌ์„ ๋•Œ ๋‘ ํ”„๋กœํ† ์ฝœ์ด ์–ด๋–ค ์˜ํ–ฅ์„ ๋ฐ›๋Š”์ง€ ์•Œ์•„ ๋ณด๋Š” ๊ฒƒ์€ ๋‘ ํ”„๋กœํ† ์ฝœ์˜ ์ฐจ์ด๋ฅผ ํ™•์ธ ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋™์ผํ•˜๊ฒŒ ๊ตฌํ˜„๋œ BB84์™€ SARG04 ํ”„๋กœํ† ์ฝœ์—์„œ depolarization ํšจ๊ณผ๊ฐ€ ์žˆ์„ ๋•Œ ๊ฐ ํ”„๋กœํ† ์ฝœ์—์„œ ์ƒ์„ฑ๋˜๋Š” ์–‘์ž ๋น„ํŠธ ์—๋Ÿฌ ๋น„์œจ, sifted key rate, ์˜ˆ์ƒ๋˜๋Š” ๋น„๋ฐ€ ํ‚ค์˜ ์–‘์„ ๋น„๊ตํ•ด ๋ณด์•˜๋‹ค. ๊ทธ ๊ฒฐ๊ณผ SARG04๊ฐ€ BB84 ๋ณด๋‹ค ์ฑ„๋„์˜ depolarization ํšจ๊ณผ์— ๋ฏผ๊ฐํ•˜๊ฒŒ ๋ฐ˜์‘ํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธ ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.Decoy state method๋Š” SARG04์ฒ˜๋Ÿผ ๋„์ฒญ์ž์˜ PNS attack์— ๋Œ€์‘ํ•˜๊ธฐ ์œ„ํ•ด ์ œ์•ˆ๋˜์—ˆ๋‹ค. Decoy state method๋Š” ํ”„๋กœํ† ์ฝœ์ด ์•„๋‹ˆ๋ผ ํ”„๋กœํ† ์ฝœ๊ณผ ํ•จ๊ป˜ ์‚ฌ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค. ์ด๊ฒƒ์€ ๋ณด๋‚ด๋Š” ์‚ฌ๋žŒ์ด ์•ฝํ•œ ๋ ˆ์ด์ €๋ฅผ ๋ณด๋‚ผ ๋•Œ ๋‹ค๋ฅธ ์„ธ๊ธฐ๋ฅผ ๊ฐ–๋Š” ์•ฝํ•œ ๋ ˆ์ด์ €๋ฅผ ๋ฌด์ž‘์œ„๋กœ ์„ž์–ด์„œ ๋ณด๋‚ด๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ ์‹ค์ œ ํ‚ค๋กœ ์‚ฌ์šฉํ•˜๋Š” ์‹ ํ˜ธ๋ฅผ signal์ด๋ผ๊ณ  ํ•˜๊ณ  signal๊ณผ ๋‹ค๋ฅธ ์„ธ๊ธฐ๋ฅผ ๊ฐ–๋Š” ์‹ ํ˜ธ๋ฅผ decoy๋ผ๊ณ  ํ•œ๋‹ค. ์ด๋•Œ ๋‹ค๋ฅธ ์„ธ๊ธฐ์˜ ๊ฐœ์ˆ˜๊ฐ€ 1๊ฐœ์ด๋ฉด one decoy state method, 2๊ฐœ์ด๋ฉด two decoy state method๋ผ๊ณ  ํ•œ๋‹ค. two decoy state method์—์„œ ๋‘ ๊ฐœ์˜ ๋‹ค๋ฅธ ์„ธ๊ธฐ์˜ decoy์ค‘ ํ•˜๋‚˜๋ฅผ vacuum์œผ๋กœ ์‚ฌ์šฉํ•œ๋‹ค๋ฉด one decoy state method์™€ two decoy state method์„ ๋น„๊ตํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” BB84 ํ”„๋กœํ† ์ฝœ์— one- and two-decoy state method๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์–‘์ž ํ‚ค ๋ถ„๋ฐฐ๋ฅผ ๊ตฌํ˜„ํ•˜์˜€์œผ๋ฉฐ ๋‘ ๊ฐ€์ง€ ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ์–ป์–ด์ง€๋Š” ์‹คํ—˜๊ฒฐ๊ณผ๋ฅผ ๋น„๊ตํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ์ด๋ก ์ ์œผ๋กœ๋งŒ ์•Œ๋ ค์ ธ ์žˆ๋˜ two decoy state method ๊ฐ€ one decoy state method๋ณด๋‹ค ๋งŽ์€ ๋น„๋ฐ€ ํ‚ค๋ฅผ ์ƒ์„ฑํ•œ๋‹ค๋Š” ๊ฒƒ์„ ์‹คํ—˜์ ์œผ๋กœ ํ™•์ธ์„ ํ•˜์˜€๋‹ค.๋งˆ์ง€๋ง‰์œผ๋กœ ์–‘์ž ์ •๋ณด ๋ถ„์•ผ์—์„œ ๋งŽ์€ ์‘์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ๊ฐ–๊ณ  ์žˆ๋Š” 2D ์–‘์ž ๊ฑธ์Œ์„ ๋‹จ์ผ ๊ด‘์ž ๊ด‘์›๊ณผ ์–ฝํž˜ ๊ด‘์ž ๊ด‘์›์„ ์ด์šฉํ•˜์—ฌ ๊ตฌํ˜„ ํ•˜์˜€๋‹ค. ๋‹ค ์ฐจ์› ์–‘์ž ๊ฑธ์Œ์€ ๋ณต์žกํ•œ ์–‘์ž ์‹œ์Šคํ…œ์˜ ๋™์ž‘์„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ•˜๋Š”๋ฐ ๊ฐ€์žฅ ๊ฐ•๋ ฅํ•œ ๋„๊ตฌ์ด๋ฉฐ, ์–‘์ž ๊ฑธ์Œ์€ ์–‘์ž ์ •๋ณด ๋ฐ ์–‘์ž ๊ณ„์‚ฐ ๋ถ„์•ผ์—์„œ๋„ ๋งŽ์€ ์‘์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ๊ฐ–๊ณ  ์žˆ๋‹ค. ๊ฐ€์žฅ ๋Œ€ํ‘œ์ ์ธ ๊ฒƒ์œผ๋กœ 2D ์–‘์ž ๊ฑธ์Œ์€ ๊ณ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์†๋„ ํ–ฅ์ƒ์„ ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์ด ์ž˜ ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด์ „๊นŒ์ง€ ์‹คํ—˜์ ์œผ๋กœ ๊ตฌํ˜„๋˜์ง€ ๋ชปํ•œ ๋‹จ์ผ ๊ด‘์ž๋ฅผ ์ด์šฉํ•œ 2D ์–‘์ž ๊ฑธ์Œ์„ ๊ตฌํ˜„ํ•˜์˜€์œผ๋ฉฐ, ๋˜ํ•œ ์–ฝํž˜ ๊ด‘์ž ๊ด‘์›์„ ์ด์šฉํ•˜์—ฌ ์–‘์ž ๊ฑธ์Œ์ด ๋๋‚ฌ์Œ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์–‘์ž ๊ฑธ์Œ์˜ ํ™•๋ฅ  ๋ถ„ํฌ๋ฅผ ํ›„ ์„ ํƒํ•  ์ˆ˜ ์žˆ๋Š” ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ์‹คํ—˜์ ์œผ๋กœ ๊ตฌํ˜„ํ•˜์˜€๋‹ค.๊ฒฐ๋ก ์ ์œผ๋กœ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์–‘์ž ํ‚ค ๋ถ„๋ฐฐ ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•˜์—ฌ ์—ฌ๋Ÿฌ ํ”„๋กœํ† ์ฝœ๋“ค์„ ๊ตฌํ˜„ ๋ฐ ๋น„๊ตํ•˜์˜€๊ณ , ์ด์ „๊นŒ์ง€ ๊ตฌํ˜„๋˜์ง€ ๋ชปํ•œ depolarizing operation ์„ ์™„๋ฒฝํ•˜๊ฒŒ ์‹คํ—˜์ ์œผ๋กœ ๊ตฌํ˜„ํ•˜์˜€์œผ๋ฉฐ, ๋งˆ์ง€๋ง‰์œผ๋กœ ๋‹ค ์ฐจ์› ์–‘์ž ๊ฑธ์Œ์„ ์—ฐ๊ตฌํ•˜์˜€๋‹ค. ๋จผ์ € ์—ฐ์†์ ์œผ๋กœ depolarization์„ ์กฐ์ ˆํ•  ์ˆ˜ ์žˆ๋Š” depolarizing ์–‘์ž ์ฑ„๋„์„ ์‹คํ—˜์ ์œผ๋กœ ๊ตฌํ˜„ ํ•˜์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ  BB84, SARG04, decoy state method ๋ฅผ ์‹คํ—˜์ ์œผ๋กœ ๊ตฌํ˜„ํ•˜๊ณ  ์„œ๋กœ๋ฅผ ์‹คํ—˜์ ์œผ๋กœ ๋น„๊ตํ•ด ๋ณด์•˜๋‹ค. ๊ทธ๋ฆฌ๊ณ  depolarizing ์–‘์ž ์ฑ„๋„์˜ ์˜ํ–ฅ์ด ์žˆ์„ ๋•Œ BB84 ์™€ SARG04 ํ”„๋กœํ† ์ฝœ์ด ์–ด๋–ค ์˜ํ–ฅ์„ ๋ฐ›๋Š”์ง€ ์‹คํ—˜์ ์œผ๋กœ ํ™•์ธ์„ ํ•˜์˜€๋‹ค. ์ด๊ฒƒ์€ BB84, SARG04, decoy state method์˜ ํŠน์„ฑ์„ ์ด๋ก ์ ์œผ๋กœ ์•Œ๋ ค์ง„ ๊ฒƒ์„ ์‹คํ—˜์ ์œผ๋กœ ํ™•์ธํ•˜๋Š” ๊ณ„๊ธฐ๊ฐ€ ๋˜์—ˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ๋‹ค ์ฐจ์› ์–‘์ž ๊ฑธ์Œ์„ ๋‹จ์ผ ๊ด‘์ž ๊ด‘์›์„ ์ด์šฉํ•˜์—ฌ ๊ตฌํ˜„ ํ•˜์˜€์œผ๋ฉฐ, ๋˜ํ•œ ์–ฝํž˜ ๊ด‘์›์„ ์ด์šฉํ•˜์—ฌ ๋‹ค ์ฐจ์› ์–‘์ž ๊ฑธ์Œ์ด ๋๋‚œ ์ดํ›„์— ์–‘์ž ๊ฑธ์Œ์˜ ํ™•๋ฅ  ๋ถ„ํฌ๋ฅผ ์„ ํƒํ•˜๋Š” ์—ฐ๊ตฌ๋ฅผ ํ•˜์˜€๋‹ค.Quantum key distribution (QKD) is one of the most important quantum information applications, and quantum walk has interesting applications in the field of quantum information. In this thesis, I present the demonstration of various quantum channels, the study of several quantum key distribution protocols, and the implementation of multi-dimensional quantum walk.First, I implement various quantum channels. In QKD system, Alice sends quantum states to Bob through the quantum channel. The transmitted quantum states become transformed into unknown quantum state because of the unwanted interactions with environment. Such unwanted quantum state transformation can be described by the quantum operation due to a noisy quantum channel. To understand the transformation, it is necessary to implement various quantum operations. I implement bit flip, phase flip, bit-phase flip, amplitude damping, phase damping, and depolarizing quantum operation. In particular, the depolarizing quantum operation plays an important role in studying the quantum noise effect. I report a scheme which implements a fully controllable input-state independent depolarizing quantum operation for a photonic polarization qubit.Second, I study the several quantum key distribution protocols: BB84, SARG04, and decoy state method. The goal of quantum key distribution is sharing the secret keys between two authorized partners against eavesdropping attacks. One of the key components of the original BB84 quantum key distribution protocol is a single photon source, but the lack of highly efficient single-photon sources resulted in experimental implementations with weak laser pulses. The weak pulse implementation is practical but is susceptible to photon number splitting (PNS) attacks by an eavesdropper. To avoid this weak point, SARG04 protocol and decoy state method were proposed against PNS attack.SARG04 protocol allows to oppose the PNS attack and can generate the secret key from two photon pulses even if the whole quantum communication in SARG04 protocol is identical to BB84 protocol. In this thesis, real-world performances of BB84 and SARG04 protocols are experimentally studied using the polarization-encoded weak-pulse implementation of the protocols with an optical fiber quantum channel. I experimentally investigate the secret key rate on BB84 and SARG04 and show that BB84 performs better than SARG04.I also report experimental study of the effect of the depolarizing quantum channel on weak-pulse BB84 and SARG04 protocol. In free-space, the depolarization effect on the quantum channel might come from changing weather conditions and, in fiber, it can be caused by uncontrolled polarization and phase changes in a long optical fiber. Also, any imperfections of the optical components can give rise to the effective depolarization effect. Since all types of errors on the quantum channel should be assumed to be caused by an eavesdropper, it is important to consider how the depolarization effect affects the performance of a quantum cryptography system. Particularly, BB84 and SARG04 use identical quantum state and quantum channel. It is interesting how the depolarization effect in the quantum channel affects the secret key generation performances for the weak-pulse BB84 and SARG04 quantum cryptography systems. In this thesis, the experimental results show that BB84 performs better than SARG04 on depolarizing quantum channel under the most general eavesdropping attack.Since decoy state method was proposed against PNS attack in 2003, it has been rapidly developed theoretically and experimentally. In decoy state method, if Alice and Bob use two (one) different intensities of photon state from the signal, it is called two (one) decoy state method and usually used with BB84. Theoretically, two decoy state method can generate more secret keys than one decoy state method. In this thesis, I have successfully performed an experimental implementation of one decoy state and two (vacuum + weak) decoy state QKD on 3.1 km quantum channel. I experimentally confirm that two decoy state method can generate more secret keys than one decoy state method.Finally, I implement multi-dimensional quantum walk with a single-photon source. Multi-dimensional quantum walks are a very powerful tool for simulating the behaviors of complex quantum systems, due to their versatility. They also present interesting applications in the field of quantum information and computation. However, their experimental realization is extremely challenging with the current state-of-the-art technology. Here, I report the implementation of a two-dimensional quantum walk exploiting a scheme that is able to reduce the resources required. This is the first experiment realizing a multi-dimensional quantum walk with a single-photon source. Moreover, by means of this setting, I present the experimental simulation of the Grover walk, a model that can be used to implement the Grover quantum search algorithm

    Implementation of B92 quantum cryptography protocol using weak laser pulse in free-space

    No full text
    Maste
    corecore