10 research outputs found

    Groundwater vulnerability assessment for protection and management of water quality

    No full text
    Thesis(master`s)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :μ§€κ΅¬ν™˜κ²½κ³Όν•™λΆ€,2006.Maste

    νšŒλΆ„μ‹ λ°˜μ‘κΈ°μ—μ„œ μ΄ˆμž„κ³„ λ©”νƒ„μ˜¬μ„ μ΄μš©ν•œ RBD 팜유의 μ „μ΄μ—μŠ€ν…Œλ₯΄ν™”λ°˜μ‘μ— κ΄€ν•œ 연ꡬ

    No full text
    ν•™μœ„λ…Όλ¬Έ(석사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :화학생물곡학뢀,2006.Maste

    μ§€ν•˜μˆ˜ μ˜€μ—Όμ˜ 원인과 영ν–₯ 뢄석을 μœ„ν•œ 직접 및 κ°„μ ‘ 자료의 ν™œμš©

    No full text
    ν•™μœ„λ…Όλ¬Έ (박사)-- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : μ§€κ΅¬ν™˜κ²½κ³Όν•™λΆ€, 2013. 8. 이강근.μ§€ν•˜μˆ˜ μ˜€μ—Όμ€ ν™˜κ²½μ μΈ μš”μΈ, μΈμœ„μ μΈ μš”μΈ 등이 κ²°ν•©λœ λ‹€μ–‘ν•œ μ›μΈμœΌλ‘œ μΈν•΄μ„œ λ°œμƒν•˜λŠ” κ²½μš°κ°€ λ§Žλ‹€. λ”°λΌμ„œ μ˜€μ—Ό 쑰사 ν˜„μž₯의 νŠΉμ„±μ— λΆ€ν•©ν•˜λŠ” μ μ ˆν•œ 방법듀을 λ‹€μ–‘ν•˜κ²Œ μ μš©ν•΄μ„œ μ§€ν•˜μˆ˜ μ˜€μ—Όμ„ λΆ„μ„ν•˜λŠ” 것이 ν•„μš”ν•˜λ‹€. λ³Έ μ—°κ΅¬λŠ” 각 ν˜„μž₯의 νŠΉμ„±μ— 따라 적용 κ°€λŠ₯ν•˜κ±°λ‚˜ ν•„μš”ν•œ μ˜€μ—Ό 뢄석 방법듀을 μ μ ˆν•˜κ²Œ ν†΅ν•©ν•˜μ—¬ μ§€ν•˜μˆ˜ μ˜€μ—Όμ„ ν‰κ°€ν•˜λŠ” 방법을 μ œμ‹œν•˜κ³  μžˆλ‹€. λ³Έ λ…Όλ¬Έμ˜ μ„Έ 가지 μ£Όμ œλŠ” 각각 μ„œλ‘œ λ‹€λ₯Έ ν™˜κ²½μ—μ„œ λ‹€λ₯Έ 원인에 μ˜ν•œμ§€ν•˜μˆ˜ μ˜€μ—Όμ„ λΆ„μ„ν•˜λŠ” 것을 닀루고 μžˆλ‹€. 첫 번째 μ£Όμ œλŠ” λ†μ΄Œμ§€μ—­μ—μ„œ μ§€ν•˜μˆ˜ μ˜€μ—Όμ„ ν‰κ°€ν•˜λŠ” λ‚΄μš©μœΌλ‘œ μ§€ν•˜μˆ˜ λ‚΄μ˜ 용질 이동을 수치λͺ¨μ˜ ν•˜λŠ” 방법과 λ‹€λ³€λŸ‰ νšŒκ·€λΆ„μ„ 방법을 ν†΅ν•©ν•˜μ—¬ 토지 이용 양상이 μ§€ν•˜μˆ˜ μˆ˜μ§ˆμ— λ―ΈμΉ˜λŠ” 영ν–₯을 μ •λŸ‰ν™” ν•˜λŠ” 방법을 μ œμ‹œν•˜κ³  μžˆλ‹€. 이λ₯Ό μœ„ν•΄ 용질 μ΄λ™μ˜ 물리적 과정을 λ°˜μ˜ν•œ μ—­λ°©ν–₯ 이동 방정식을 μ‚¬μš©ν•˜μ—¬ ν™•λ₯ μ  ν¬νšκΆŒμ„ μ„€μ •ν•˜μ˜€λ‹€. ν™•λ₯ μ  ν¬νšκΆŒμ€ κ΄€μ • μΈκ·Όμ—μ„œ μ˜€μ—Όλ¬Όμ§ˆμ˜ 유좜이 λ°œμƒν•  λ•Œ, κ΄€μ •μ—μ„œ μ–‘μˆ˜λ˜λŠ” μ§€ν•˜μˆ˜ 수질이 κ·Έ 영ν–₯을 λ°›κ²Œ λ˜λŠ” 유좜 μ˜μ—­κ³Ό κ·Έ 정도λ₯Ό ν™•λ₯  κ°’μœΌλ‘œ λ‚˜νƒ€λ‚΄μ–΄ μ€€λ‹€. Tobit νšŒκ·€ 뢄석은 쒅속 νšŒκ·€ λ³€μˆ˜λ“€κ³Ό 독립 λ³€μˆ˜μ˜ 상관관계λ₯Ό λΆ„μ„ν•˜λŠ” λ°©λ²•μ˜ ν•˜λ‚˜λ‘œ λ³Έ μ—°κ΅¬μ—μ„œλŠ” μ˜€μ—Όλ¬Όμ§ˆμ˜ 농도λ₯Ό 독립 λ³€μˆ˜λ‘œ ν•˜μ—¬ λ‹€λ₯Έ μš”μ†Œλ“€μ΄ μ§€ν•˜μˆ˜ 농도에 λ―ΈμΉ˜λŠ” 영ν–₯을 μ‚΄νŽ΄λ³΄κΈ° μœ„ν•΄ μ‚¬μš© λ˜μ—ˆλ‹€. ν™•λ₯ μ  포획ꢌ과 νšŒκ·€λΆ„μ„λ²•μ„ ν†΅ν•©ν•œ λͺ¨λΈμ„ ν†΅ν•΄μ„œ 연ꡬ ν˜„μž₯인 좘천의 μ†Œκ·œλͺ¨ 농업 λΆ„μ§€μ˜ κ΄€μ •μ—μ„œ κ²€μΆœλœ μ§ˆμ‚°μ„± μ§ˆμ†Œμ˜ 농도가 인근의 λ°­, κ³Όμˆ˜μ›, 좕사 등에 μ˜ν•΄ μ–Όλ§ˆλ‚˜ 영ν–₯을 λ°›λŠ”μ§€λ₯Ό μ•Œμ•„ λ³΄μ•˜λ‹€. 두 번째 μ£Όμ œλŠ” κ°€μΆ• 맀λͺ°μ§€μ—μ„œ λ°œμƒν•˜λŠ” 침좜수의 거동에 κ΄€ν•œ μ—°κ΅¬λ‘œ 맀λͺ°μ§€λΌλŠ” 연ꡬ ν˜„μž₯의 νŠΉμ„±μƒ κ΄€μΈ‘κ³Ό μ§€ν•˜μˆ˜ μ‹œλ£Œ μˆ˜μ§‘ 등에 κ΄€ν•œ ν™œλ™μ΄ μžμœ λ‘­μ§€ λͺ»ν•˜λ‹€λŠ” μ œμ•½μ΄ μžˆλŠ” μ‘°κ±΄μ—μ„œ μ§„ν–‰λ˜μ—ˆλ‹€. μ§€ν•˜μˆ˜ 관정을 μ‚¬μš©ν•˜λŠ” 것이 μ œν•œμ μ΄λΌλŠ” 점을 κ·Ήλ³΅ν•˜κ³  μ‚¬μš©ν•  수 μžˆλŠ” 자료λ₯Ό μˆ˜μ§‘ν•˜κΈ° μœ„ν•΄μ„œ μ „κΈ°λΉ„μ €ν•­ 탐사가 μ§„ν–‰λ˜μ—ˆλ‹€. μΈ‘μ •λœ μ „κΈ°λΉ„μ €ν•­ 값은 연ꡬ ν˜„μž₯의 침좜수 λͺ¨λΈλ§ 결과와 λΉ„κ΅ν•˜μ—¬ λͺ¨λΈμ˜ μœ νš¨μ„±μ„ κ²€μ¦ν•˜λŠ”λ° μ‚¬μš©λ˜μ—ˆλ‹€. μ „κΈ°λΉ„μ €ν•­ 탐사 κ²°κ³Όλ₯Ό λ³΄μ—¬μ£ΌλŠ” κ·Έλ¦Όκ³Ό 침좜수 뢄포λ₯Ό λ³΄μ—¬μ£ΌλŠ” λͺ¨λΈλ§ κ²°κ³Ό 그림의 μœ μ‚¬μ„±μ„ μ •λŸ‰μ μœΌλ‘œ λΉ„κ΅ν•΄μ„œ μžλ£Œκ°€ μ œν•œμ μΈ μƒνƒœμ—μ„œ λ§Œλ“€μ–΄μ§„ 수치λͺ¨λΈμ„ 침좜수 거동을 μ˜ˆμΈ‘ν•˜λŠ”λ° μ‚¬μš©ν•  수 μžˆλ„λ‘ ν–ˆλ‹€. λ§ˆμ§€λ§‰ μ£Όμ œλŠ” μˆ˜λ¦¬μ§€ν™”ν•™ μžλ£Œμ™€ μ•ˆμ •λ™μœ„μ›μ†Œλ₯Ό μ‚¬μš©ν•˜μ—¬ μ—¬μˆ˜ ν•΄μ•ˆκ°€μ— μœ„μΉ˜ν•œ μ§€ν•˜ μ„μœ  λΉ„μΆ• κΈ°μ§€μ˜ μ—Όν™”λœ μ‚ΌμΆœμˆ˜μ˜ νŠΉμ„±μ„ 뢄석, μ—ΌλΆ„μ˜ 기원과 μœ μž… 경둜λ₯Ό λΆ„μ„ν•˜λŠ” 연ꡬ이닀. 연ꡬ 지역은 ν•΄μ•ˆκ°€λΌλŠ” ν™˜κ²½μ  νŠΉμ„±κ³Ό μ§€ν•˜λΉ„μΆ•κΈ°μ§€λΌλŠ” μ‹œμ„€μ  νŠΉμ„±μœΌλ‘œ 인해 λ‹¨μˆœν•˜μ§€ μ•Šμ€ ν•΄μˆ˜μ˜ μœ μž…μ΄ μ˜ˆμƒλ˜λŠ” 곳으둜 λ‹€μ–‘ν•œ μ ‘κ·Ό 방법을 κ°–κ³  연ꡬ가 μ§„ν–‰λ˜μ—ˆλ‹€. Cl-/Br-의 λΉ„μœ¨, μ£Όμš” μ΄μ˜¨λ“€μ˜ μ£Όμ„±λΆ„ 뢄석, μ•ˆμ •λ™μœ„μ›μ†Œ μžλ£Œλ“€λ‘œλΆ€ν„° λ‚˜μ˜¨ κ²°κ³Όλ“€κ³Ό ν˜„μž₯의 μˆ˜λ¦¬μ§€μ§ˆν•™μ  νŠΉμ„±μ„ μ’…ν•©ν•˜μ—¬ 비좕기지 μ‚ΌμΆœμˆ˜μ˜ μ—ΌλΆ„ 기원과 μ—Όν™” 정도λ₯Ό λΆ„μ„ν•˜μ˜€λ‹€.Often the groundwater contamination is derived from multiple causes of both the environmental and anthropogenic sources. Thus, analysis of contamination needs to be approached with multiple methods appropriate for the characters of investigation site. This study suggests integration of different methods which are properly chosen according to the site specific characteristics when evaluating groundwater contamination. Each of the three topics which comprise this study deals with analysis of groundwater contamination from environmental-anthropogenic coupled sources in various environment. In the first topic, modeling of solute transport is integrated into a regression method to analyze the effect of land use on groundwater quality and to predict contaminant concentration of groundwater in an agricultural region. A backward transport equation, which is a mathematical model based on the physical processes of solute transport, is used to delineate probabilistic capture zones. The probabilistic capture zone defines the area where contaminant discharge can have a direct influence, with pertinent probability, on the quality of groundwater pumped from a well. Tobit regression analysis is used to find the relationship between independent regression variables and a dependent variable, which is a contaminant concentration in this study. The capture zone and the regression analysis are combined into a model, and its applicability for prediction of nitrate concentration is tested in a small agricultural basin in Chuncheon, Korea, which is occupied mainly by vegetation fields, orchards, and small barns. The second topic is about leachate transport from livestock mortality burial during the decomposition of carcasses. Due to the specificity of the site, there was only one well for monitoring and sampling groundwater and it was difficult to set up additional wells even for research purposes. In order to overcome the limitation of using monitoring wells, electrical resistivity survey is used as an alternative method of obtaining data. The electrical resistivity measures were compared with the result of leachate transport model of the study site. The properties of the images from the two different methods were compared and analyzed for quantitative assessment of the simulation model to increase accuracy in prediction of leachate transport. The last topic uses hydrogeochemical and isotopic indicators to assess the characteristics of salinized seepage into an underground oil storage cavern in a coastal area of Yeosu, Korea. The construction and operation of underground caverns can act as groundwater sinks near a coastal area. In an environment complicated with such artificial structures, seawater intrusion is not simple and thus needs to be evaluated by means of multiple analytical approaches. Cl-/Br- ratios, principal component analysis (PCA) of chemical data, and stable isotope data were used to determine the origin and the extent of salinization. These data are interpreted under the context of hydrogeological feature of the study area.Abstract i Contents iv List of Figures vii List of Tables xiii Chapter 1 Introduction 1 Chapter 2 Model-integrated regression analysis of groundwater contamination at an agricultural region 6 2.1 Introduction 8 2.2 Methods 11 2.2.1 Delineating probabilistic capture zone 14 2.2.2 Tobit regression 18 2.2.3 Model-integrated regression analysis 20 2.2.3.1 Site Description 20 2.2.3.2 Application 24 2.3 Results & Discussion 35 2.4 Conclusion 41 Chapter 3 Analysis of leachate transport at a livestock burial site using a model validated with geophysical data 44 3.1 Introduction 46 3.2 Site Description 48 3.3 Methods 53 3.3.1 Electrical resistivity survey 53 3.3.2 Simulation of leachate transport 56 3.3.3 Image similarity metric 62 3.4 Results and Discussion 63 3.4.1 Electrical resistivity near the burial pits 63 3.4.2 Leachate transport from the burial 71 3.4.3 Image similarity: IMED 75 3.5 Conclusion 79 Chapter 4 Hydrogeochemical analysis of salinity in groundwater in a coastal environment 81 4.1 Introduction 83 4.2 Site description 86 4.3 Methods 90 4.3.1 Sampling and analysis 90 4.3.2 Data analysis 94 4.4 Results 96 4.4.1 Na+, Cl- and EC 96 4.4.2 Cl-/Br- ratio 102 4.4.3 Principal component analysis 105 4.4.4 Stable isotope analysis 110 4.4.5 Cl--Br- and Cl--Ξ΄18O ratio 112 4.5 Discussion 114 4.5.1 Chances of seawater intrusion 114 4.5.2 Origin of the salinity 115 4.5.3 Extent of seawater mixing 117 4.6 Conclusion 120 Concluding Remarks 121 References 123 Abstract (Korea) 136Docto
    corecore