28 research outputs found
νν₯μ/μν₯μ μ κ·Όλ°©λ²μ ν΅ν κ·Έλν μμμ μ μ μ‘° λ° κ΄μ μ μμ©
νμλ
Όλ¬Έ (λ°μ¬)-- μμΈλνκ΅ λνμ : ννμ물곡νλΆ(μλμ§νκ²½ ννμ΅ν©κΈ°μ μ 곡), 2014. 8. μ₯μ μ.μ§λ μλ
λμ μ§μ€μ μΈ μ°κ΅¬μ κ΄μ¬μ λΆλ¬ μΌμΌν€κ³ μλ κ·Έλνμμμ μ μΈ‘λ©΄μ§λ¦μ΄ μ½ 100 nm μ΄νμ΄κ³ , λ¨μΌ-, μ΄μ€-, λͺ μΈ΅μ(3 λ΄μ§ 10 κ°μ) μΈ΅μΌλ‘ μ΄λ£¨μ΄μ§ κ·Έλν μνΈμ΄λ€. κ·Έλνμμμ μ λμ νλ©΄μ , ν° μ§λ¦, μ 리ν νλ©΄κ²°ν© μ΄λ νλ©΄κ·Έλ£Ήκ³Ό κ°μ κ³ μ νΉμ± λΏλ§ μλλΌ, μ°μν νκ΄ νΉμ± λ° μ
컨λ²μ Ό νκ΄νΉμ±μ λ°νμΌλ‘ κ΄μ μ곡ν, νκ΄μΌμ, λ°μ΄μ€ μμ©, μ΄λ§€λ°μ, μλμ§ μ μ₯ λ° λ³ν λ±μ λ€μν λΆμΌμ μ μ©λκ³ μλ€.
λ³Έ μ°κ΅¬μμλ νν₯μ/μν₯μ μ κ·Όλ°©λ²μ μ΄μ©νμ¬ ν¬κΈ°μ νκ΄νΉμ±μ΄ μ‘°μ λ κ·Έλνμμμ μ μ μ‘°νμμΌλ©°, μ΄λ€μ νμ± λ©μ»€λμ¦μ 체κ³μ μΌλ‘ κ³ μ°°νμκ³ , μμΈλ¬ κ΄μ λ³νμμ, νκ΄ μΌμ, λ°μ΄μ€ μ΄λ―Έμ§μΌλ‘μ μμ©μ λν΄ μ΄ν΄λ³΄μλ€.
νν₯μ μ κ·Όλ°©λ²μΌλ‘, κ·Έλνμμμ μ νμλλ
Έλ¬Όμ§μ μ°νλ°©λ²κ³Ό ν¬κΈ°μ νμ λΆλ¦¬λ°©λ²μ μ΄μ©ν΄ μ μ‘°ν μ μμλ€. ν₯λ―Έλ‘κ²λ, κ·Έλνμμμ μ μ§λ¦κ³Ό νκ΄νμ₯μ μμλ¬Όμ§μ νν λμμΈκ³Ό μ°ν쑰건μ μ΅μ νλ₯Ό ν΅νμ¬ μ‘°μ ν μ μμλ€. λΏλ§ μλλΌ, κ·Έλν μμμ μ κ· μΌν λ°κ΄νΉμ±μ νμ©νκΈ° μν΄μ, ν¬κΈ°μ νμ μΉ¨μ λ°©λ²μ μ΄μ©ν λΆλ¦¬λ°©λ²μ μ ννμλ€. κ·Έλν μμμ μ ν¬κΈ°μ νμ μΉ¨μ λ°©λ²μ ν΅ν΄μ μΆκ°μ μΈ ν¬μλ°©λ² μμ΄ μ±κ³΅μ μΌλ‘ κ· μΌν ν¬κΈ°μ κ·Έλν μμμ μ μ»μ μ μμλ€.
μν₯μ μ κ·Όλ°©λ²μΌλ‘, μ¬λ¬ λνλ¬Όμ§κ³Ό ν¨κ» μ κΈ°μ ꡬ체μ νν곡μ μ μ΄μ©νμ¬ ν€ν
λ‘μμκ° λνλ κ·Έλνμμμ μ μ μ‘°ν μ μμλ€. ν©μ°μ μ΄λ§€μ‘°κ±΄μμ μνΈλ₯΄μ°μ νμ곡μ μ ν΅νμ¬ νμ°μ μ μ‘면체 ꡬ쑰λ₯Ό νμ±νλ©° κ·Έλν μμμ μΌλ‘ λ³νμλ€. λν ν©μ°κ³Ό λλ©νΈν¬λ¦μλ―Έλκ° κ°κ° ν©κ³Ό μ§μ° λν λ¬Όμ§λ‘μ μ¬μ©λμ΄, ννμ λκ° μ‘°μ λκ³ , κ·Έλ μ€μΌμΌμ, κ·Έλ¦¬κ³ λμ νκ΄μμν¨μ¨(μ½ 61%)μ κ°μ§ ν©κ³Ό μ§μκ° λνλ κ·Έλνμμμ μ μ μ‘°νμλ€. λ³Έ μ°κ΅¬μμ μλ‘κ² κ°λ°ν νν₯μ/μν₯μ μ κ·Όλ°©λ²μ μ μ΄λ ν¬κΈ° λ° λͺ¨μμ μ§λ λ€μν μ’
λ₯μ κ·Έλνμμμ μ μ‘°μ μ μ©λ μ μμΌλ©°, μ΄λ₯Ό ν΅ν΄ μ μ/κ΄μ μ μ₯μΉ, νκ΄νλ‘λΈ, λ°μ΄μ€μ΄λ―Έμ§, μλμ§λ³νμ₯μΉλ₯Ό ν¬ν¨ν μ¬λ¬κ°μ§ μμ©λΆμΌμ νλκ² νμ©λ μ μμ κ²μΌλ‘ μ¬λ£λλ€.1. INTRODUCTION 28
1.1. Background 28
1.1.1. Graphene quantum dots 28
1.1.2. Synthesis of graphene quantum dots 30
1.1.2.1. Acidic oxidation 31
1.1.2.2. Hydrothermal and solvothermal method 35
1.1.2.3. Microwave- and sonication-assisted method 36
1.1.2.4. Electrochemical method 37
1.1.2.5. Bottom-up approach 40
1.1.3. Application fields 43
1.1.3.1. Bioimaging 43
1.1.3.2. Photoluminescence sensors 45
1.1.3.3. Catalyst for the oxygen reduction reaction 45
1.1.3.4. Organic photovoltaic devices 48
1.2. Objectives and Outlines 51
1.2.1. Objectives 51
1.2.2. Outlines 51
2. EXPERIMENTAL DETAILS 56
2.1. Top-down Approach for Fabricating Uniform Graphene Qauntum Dots with Sizes 56
2.1.1. Chemical oxidation of various types of carbon materials 56
2.1.2. Separation of graphene quantum dots via size-selective precipitation approach 56
2.2. Bottom-up Approach for Fabricating Graphene Quantum Dots based on Carbonization and Heteroatom Doping 57
2.2.1. Carbonization of citric acid 57
2.2.2. Controllable S, N-doping of graphene quantum dot 58
2.3. Applications 59
2.3.1. FRET-based dye-sensitized solar cells for near-infrared light harvesting 59
2.3.2. Graphene quantum dot-based fluorescent sensor for rapid and ultrasensitive detection of an anthrax biomarker 60
2.3.3. Photoinduced electron transfer based sensor probes for intracellular hydrogen peroxide 61
3. RESULTS AND DISCUSSION 65
3.1. Top-down Approach for Fabricating Uniform Graphene Qauntum Dots with Sizes 65
3.1.1. Chemical oxidation of various types of carbon materials 68
3.1.2. Separation of graphene quantum dots via size-selective precipitation approach 81
3.2. Bottom-up Approach for Fabricating Graphene Quantum Dots based on Carbonization and Heteroatom Doping 91
3.2.1. Carbonization of citric acid 93
3.2.2. Controllable S, N-doping of graphene quantum dot 93
3.3. Applications 110
3.3.1. FRET-based dye-sensitized solar cells for near-infrared light harvesting 110
3.3.2. Graphene quantum dot-based fluorescent sensor for rapid and ultrasensitive detection of an anthrax biomarker 130
3.3.3. Photoinduced electron transfer based sensor probes for intracellular hydrogen peroxide 145
4. CONCLUSIONS 169
REFERENCES 173
κ΅λ¬Έμ΄λ‘ 185Docto
2μ°¨μ 격μμ κ³ μ°¨ μμ λ μ΄λ‘
νμλ
Όλ¬Έ(μμ¬)--μμΈλνκ΅ λνμ :μμ°κ³Όνλν 물리·μ²λ¬ΈνλΆ(물리νμ 곡),2020. 2. μλ²μ .Bulk-boundary correspondence is the fundamental property of topological phases. In conventional topological insulators, the gapped bulk states in d-dimensions support metallic states in (d-1)-dimensional surfaces. Recently, however, a class of topological crystalline insulators violating the conventional bulk-boundary correspondence has been proposed, and they are nowadays called higher-order topological insulators (HOTIs). In contrast to the conventional topological insulators, the gapless excitations of a HOTI in d-dimensions are localized in a subspace with a dimension lower than (d-1), such as corners or hinges, when the global shape of the material preserves the crystalline symmetry relevant to the nontrivial bulk band topology. In the thesis, we investigate novel properties that can appear in 2D higher-order insulators protected by crystalline symmetries.
First, we show that the band topology of graphene with a Kekule texture is a 2D second-order insulator characterized by the 2D Z2 topological invariant w2, which is quantized in systems with inversion symmetry.
Also, we propose monolayer graphdiyne (MGD) as the first realistic candidate material for 2D HOTIs protected by inversion symmetry which has same crystalline symmetries as Kekule textured graphene. We show that, despite the absence of chiral symmetry, the higher-order topology of MGD is manifested in the filling anomaly and charge accumulation at two corners. Interestingly, although its low-energy band structure can be properly described by using only pz orbital basis, the higher-order topology itself originates from the core electronic orbitals. We also show that the higher-order topology of MGD is the fundamental origin of the nontrivial band topology of ABC-stacked graphdiyne hosting monopole nodal lines and hinge states.
Second, we establish the correspondence between the fractional charge bound to a vortex in textured lattice and the relevant bulk band topology in two-dimensional (2D) HOTIs. The fractional charge localized at a vortex in the Kekule texture is shown to be related to the change in the bulk topological invariant w2 around the vortex, as in the case of the Su-Schriefer-Heeger model in which the fractional charge localized at a domain wall is related to the change in the bulk charge polarization between degenerate ground states. We show that the effective three-dimensional (3D) Hamiltonian, where the angle theta around a vortex in Kekule-textured graphene is a third coordinate, describes a 3D axion insulator with a quantized magnetoelectric polarization. The spectral flow during the adiabatic variation of theta corresponds to the chiral hinge modes of an axion insulator and determines the accumulated charge localized at the vortex. For the cases when magnetoelectric polarization is quantized due to the presence of symmetry that reverses the space-time orientation, we classify all possible topological crystalline insulators whose vortex defect carries a fractional electric charge.λ²ν¬-κ²½κ³ λμμ±μ μμνμ λ¬Όμ§μ΄ κ°μ§κ³ μλ κΈ°λ³Έ μ±μ§μ΄λ€. μ ν΅μ μΈ μμνμ μ μ°μ²΄μμ, d μ°¨μμ μ μ°λ¬Όμ§μ (d-1)μ°¨μ νλ©΄μμ κΈμ μνλ₯Ό κ°μ§λ€. νμ§λ§ μ΅κ·Όμ μ΄λ¬ν λ²ν¬-κ²½κ³ λμμ±μ κΉ¨λ μμνμ κ²°μ μ μ°μ²΄μ μ‘΄μ¬κ° μκ°λμμΌλ©° μ΄λ κ³ μ°¨ μμ μ μ°μ²΄λΌκ³ λΆλ¦°λ€. μ ν΅μ μΈ μμνμ μ μ°μ²΄μλ λ€λ₯΄κ² dμ°¨μ κ³ μ°¨ μμ μ μ°μ²΄λ λ¬Όμ§μ μ 체μ μΈ λͺ¨μμ΄ λ²ν¬ λ μμκ³Ό κ΄λ ¨λ κ²°μ λμΉμ μ μ§λ λ (d-1)μ°¨μ λ³΄λ€ μμ μ°¨μμ λΆλΆκ³΅κ°μΈ 경첩μ΄λ λͺ¨μ리μ κΈμ μνκ° κ΅ν λμ΄ μλ€. μ΄ λ
Όλ¬Έμμ, μ°λ¦¬λ κ²°μ λμΉμ μν΄ λ³΄νΈλλ 2μ°¨μ κ³ μ°¨ μμ μ μ°μ²΄μ λνλ μ μλ μλ‘μ΄ νΉμ±μ μ‘°μ¬νλ€.
λ¨Όμ , μ°λ¦¬λ μΌμΏ¨λ κ·Έλνμ λ μμμ΄ λ°μ λμΉ μμ€ν
μμ μμνλλ Z2 μμ λΆλ³ w2λ₯Ό νΉμ§μΌλ‘νλ 2μ°¨μ κ³ μ°¨ μμ μ μ°μ²΄μμ 보μλ€. λν, μΌμΏ¨λ κ·Έλνκ³Ό λμΌν κ²°μ λμΉμ κ°λ λ°μ λμΉμ μν΄ λ³΄νΈλλ 2μ°¨μ κ³ μ°¨ μμ μ μ°μ²΄μ λν μ΅μ΄μ νμ€μ μΈ ν보 λ¬Όμ§λ‘μ λ¨μΌ μΈ΅ κ·Έλνλ€μΈμ μ μνλ€. μΉ΄μ΄λ λμΉμ λΆμ¬μλ λΆκ΅¬νκ³ , λ¨μΌ μΈ΅ κ·Έλνλ€μΈμ κ³ μ°¨ μμμ μ±μ μλ
Έλ§λ¦¬λ‘ λνλλ€. ν₯λ―Έλ‘κ²λ, μλμ§ μ μ μ±μ§μ pz μ€λΉν κΈ°λ°λ§μ μ¬μ©νμ¬ μ¬λ°λ₯΄κ² μ€λͺ
ν μ μμ§λ§, κ³ μ°¨ μμ μ체λ μ¬λΆ μ μ μ€λΉνμμ λΉλ‘―λλ€. μ°λ¦¬λ λν λ¨μΈ΅ κ·Έλνλ€μΈμ κ³ μ°¨ μμμ΄ νκ·Ή λ§λμ κ³Ό νμ§ μνλ₯Ό κ°μ§λ ABC κ·Έλνλ€μΈ λ μμμ κ·Όμμμ 보μ¬μ€λ€.
λλ²μ§Έλ‘, μ°λ¦¬λ 격μ μμ©λμ΄μ ꡬμλ λΆμ μ νμ 2μ°¨μ κ³ μ°¨ μμ μ μ°μ²΄μ λ²ν¬ λ μμμ΄ λμλ¨μ 보μΈλ€. Su-Schrieffer-Heeger λͺ¨λΈμ ꡬμ λ²½μ λΆμ μ νκ° κ΅νλ κ²μ΄ μ ν λΆκ·Ήμ μ°¨μ΄μ μν΄ λνλλ κ² μ²λΌ μΌμΏ¨λ 격μμ μμ©λμ΄μ κ΅νλ λΆλΆ μ νλ μμ©λμ΄ μ£Όμμ λ²ν¬ μμ λΆλ³ w2μ λ³νμ κ΄λ ¨μ΄μλ κ²μΌλ‘ λνλλ€. λν μΌμΏ¨λ κ·Έλνμμ μμ©λμ΄ μ£Όμμ κ°λ thetaλ₯Ό μΈλ²μ§Έ μ’νλ‘ λνλμ λ λ§λ€μ΄μ§ 3μ°¨μ ν΄λ°ν λμμ μμν λ μκΈ° μ κΈ° λΆκ·Ήμ κ°λ μΌμ°¨ μ‘μμ¨ μ μ°μ²΄μ μ€λͺ
νλ€. μκ³΅κ° λ°©ν₯μ λ°μ μν€λ λμΉμ μ‘΄μ¬λ‘ μΈν΄ μ‘μμ¨ μ μ°μ²΄κ° λ§λ€μ΄μ§λ κ²½μ°μ, μ°λ¦¬λ μμ©λμ΄κ° λΆλΆ μ νλ₯Ό κ°λ λͺ¨λ κ°λ₯ν μμ κ²°μ μ μ°μ²΄λ₯Ό λΆλ₯νλ€.Chapter 1 Introduction 1
1.1 Charge fractionalization in SSH model 2
1.1.1 Wilson loop and polarization 4
1.2 Chern Insulator 5
1.3 2D Z2 topological insulator 6
Chapter 2 2D higher-order TI 9
2.1 Inversion symmetric 2D higher-order TI 9
2.2 Kekule graphene 11
2.3 Monolayer graphdiyne 13
2.3.1 Corner Charges and Filling anomaly 15
Chapter 3 Fractional charge bound to a vortex in 2D HOTI 23
3.1 Higher-order band topology of Kekule textured graphene 25
3.2 Spectral flow and topological term 26
3.3 Generalization 28
Chapter 4 Summary 35
Appendix A Nested Wilson loop 39
Appendix B Classification of axion insulators by crystalline symmetries 43
Appendix C Wannier center and quantized fractional charge in topological vortex 55
Bibliography 59
μ΄λ‘ 65Maste
λΉ λ₯Έ λνΉμ±μ κ°λ deadbeat μΈλ²ν° μ μμ μ΄ μκ³ λ¦¬μ¦
νμλ
Όλ¬Έ(μμ¬)--μμΈλνκ΅ λνμ :μ κΈ°Β·μ»΄ν¨ν°κ³΅νλΆ,2002.Maste
Downward type deposition source and deposition apparatus having the same
λ³Έ λ°λͺ
μ, 본체μ, μ΄ λ³Έμ²΄ λ΄μ ꡬλΉλκ³ μ¦μ°©λ¬Όμ§μ μμ©νλ κ°κ΅¬λ μλΆμλ λ°νλ₯Ό μν 컀λ²κ° κ²°ν©λκ³ νλΆμλ λ€κ³΅νμΌλ‘ λ λΆμ¬κ΅¬κ° νμ±λ λκ°λμ, μ΄ λκ°λμ μ€κ°λμ΄μμ λκ°λλ₯Ό λλ¬μΈλλ‘ λ°°μΉλκ³ μ κ³ μ£Όν μ λμ λ₯κ° μΈκ°λλ μ 1μ½μΌ λ°, μ΄ μ 1μ½μΌμ μλμμ μκΈ° λκ°λμ λΆμ¬κ΅¬λ₯Ό λλ¬μΈλλ‘ λ°°μΉλλ©° κ³ μ£Όν μ λμ λ₯κ° μΈκ°λλ μ 2μ½μΌμ ν¬ν¨νλ νν₯μ μ¦λ°μκ³Ό μ΄λ₯Ό ꡬλΉν μ¦μ°©μ₯μΉμ κ΄ν κ²μΌλ‘, λ³Έ λ°λͺ
μ μνλ©΄ μ μ΄λ νλμ μ¦λ°μμ μ¦μ°©μ₯μΉμ μ±λ²μ μλΆμ λ°°μΉνμ¬ λΆμμ μ΄ μλλ‘ κ³΅κΈλ μ μλλ‘ νκ³ μ κ³ μ£Όν μ λκ°μ΄μ μ΄μ©ν¨μΌλ‘μ¨, λλ©΄μ κΈ°νμ νμ±λλ λ°λ§μ κ· μΌλλ₯Ό ν보νκ³ μμ€μ κ°μ΄μκ°μ λ¨μΆν μ μμ΄ μ λΉμ©μ λ°λ§μ μ‘°κ° κ°λ₯νκ² λλ ν¨κ³Όκ° μκ² λλ€.본체μ, μ΄ λ³Έμ²΄ λ΄μ ꡬλΉλκ³ μ¦μ°©λ¬Όμ§μ μμ©νλ κ°κ΅¬λ μλΆμλ λ°νλ₯Ό μν 컀λ²κ° κ²°ν©λκ³ νλΆμλ λ€κ³΅νμΌλ‘ λ λΆμ¬κ΅¬κ° νμ±λ λκ°λμ, μ΄ λκ°λμ μ€κ°λμ΄μμ λκ°λλ₯Ό λλ¬μΈλλ‘ λ°°μΉλκ³ μ κ³ μ£Όν μ λμ λ₯κ° μΈκ°λλ μ 1μ½μΌ λ°, μ΄ μ 1μ½μΌμ μλμμ μκΈ° λκ°λμ λΆμ¬κ΅¬λ₯Ό λλ¬μΈλλ‘ λ°°μΉλλ©° κ³ μ£Όν μ λμ λ₯κ° μΈκ°λλ μ 2μ½μΌμ ν¬ν¨νλ κ²μ νΉμ§μΌλ‘ νλ νν₯μ μ¦λ°μ