28 research outputs found

    ν•˜ν–₯식/상ν–₯식 접근방법을 ν†΅ν•œ κ·Έλž˜ν•€ μ–‘μžμ μ˜ 제쑰 및 κ΄‘μ „μž μ‘μš©

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (박사)-- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : 화학생물곡학뢀(μ—λ„ˆμ§€ν™˜κ²½ ν™”ν•™μœ΅ν•©κΈ°μˆ μ „κ³΅), 2014. 8. μž₯정식.μ§€λ‚œ μˆ˜λ…„ λ™μ•ˆ 집쀑적인 연ꡬ적 관심을 뢈러 μΌμœΌν‚€κ³  μžˆλŠ” κ·Έλž˜ν•€μ–‘μžμ μ€ 츑면지름이 μ•½ 100 nm μ΄ν•˜μ΄κ³ , 단일-, 이쀑-, λͺ‡ 측의(3 내지 10 개의) 측으둜 이루어진 κ·Έλž˜ν•€ μ‹œνŠΈμ΄λ‹€. κ·Έλž˜ν•€μ–‘μžμ μ˜ 높은 ν‘œλ©΄μ , 큰 지름, μœ λ¦¬ν•œ ν‘œλ©΄κ²°ν•© μ΄λ‚˜ ν‘œλ©΄κ·Έλ£Ήκ³Ό 같은 κ³ μœ νŠΉμ„± 뿐만 μ•„λ‹ˆλΌ, μš°μˆ˜ν•œ ν˜•κ΄‘ νŠΉμ„± 및 μ—…μ»¨λ²Œμ Ό ν˜•κ΄‘νŠΉμ„±μ„ λ°”νƒ•μœΌλ‘œ κ΄‘μ „μžκ³΅ν•™, ν˜•κ΄‘μ„Όμ„œ, λ°”μ΄μ˜€ μ‘μš©, μ΄‰λ§€λ°˜μ‘, μ—λ„ˆμ§€ μ €μž₯ 및 λ³€ν™˜ λ“±μ˜ λ‹€μ–‘ν•œ 뢄야에 적용되고 μžˆλ‹€. λ³Έ μ—°κ΅¬μ—μ„œλŠ” ν•˜ν–₯식/상ν–₯식 접근방법을 μ΄μš©ν•˜μ—¬ 크기와 ν˜•κ΄‘νŠΉμ„±μ΄ 쑰절된 κ·Έλž˜ν•€μ–‘μžμ μ„ μ œμ‘°ν•˜μ˜€μœΌλ©°, μ΄λ“€μ˜ ν˜•μ„± λ©”μ»€λ‹ˆμ¦˜μ„ μ²΄κ³„μ μœΌλ‘œ κ³ μ°°ν•˜μ˜€κ³ , μ•„μšΈλŸ¬ κ΄‘μ „λ³€ν™˜μ†Œμž, ν˜•κ΄‘ μ„Όμ„œ, λ°”μ΄μ˜€ μ΄λ―Έμ§•μœΌλ‘œμ˜ μ‘μš©μ— λŒ€ν•΄ μ‚΄νŽ΄λ³΄μ•˜λ‹€. ν•˜ν–₯식 μ ‘κ·Όλ°©λ²•μœΌλ‘œ, κ·Έλž˜ν•€μ–‘μžμ μ€ νƒ„μ†Œλ‚˜λ…Έλ¬Όμ§ˆμ˜ 산화방법과 크기선택적 뢄리방법을 μ΄μš©ν•΄ μ œμ‘°ν•  수 μžˆμ—ˆλ‹€. ν₯λ―Έλ‘­κ²Œλ„, κ·Έλž˜ν•€μ–‘μžμ μ˜ 지름과 ν˜•κ΄‘νŒŒμž₯은 μ‹œμž‘λ¬Όμ§ˆμ˜ ν˜•νƒœ λ””μžμΈκ³Ό μ‚°ν™”μ‘°κ±΄μ˜ μ΅œμ ν™”λ₯Ό ν†΅ν•˜μ—¬ μ‘°μ ˆν•  수 μžˆμ—ˆλ‹€. 뿐만 μ•„λ‹ˆλΌ, κ·Έλž˜ν•€ μ–‘μžμ μ˜ κ· μΌν•œ λ°œκ΄‘νŠΉμ„±μ„ ν™œμš©ν•˜κΈ° μœ„ν•΄μ„œ, 크기선택적 침전방법을 μ΄μš©ν•œ 뢄리방법을 μ œν•œν•˜μ˜€λ‹€. κ·Έλž˜ν•€ μ–‘μžμ μ„ 크기선택적 침전방법을 ν†΅ν•΄μ„œ 좔가적인 νˆ¬μ„λ°©λ²• 없이 μ„±κ³΅μ μœΌλ‘œ κ· μΌν•œ 크기의 κ·Έλž˜ν•€ μ–‘μžμ μ„ 얻을 수 μžˆμ—ˆλ‹€. 상ν–₯식 μ ‘κ·Όλ°©λ²•μœΌλ‘œ, μ—¬λŸ¬ λ„ν•‘λ¬Όμ§ˆκ³Ό ν•¨κ»˜ μœ κΈ°μ „κ΅¬μ²΄μ˜ 탄화곡정을 μ΄μš©ν•˜μ—¬ ν—€ν…Œλ‘œμ›μžκ°€ λ„ν•‘λœ κ·Έλž˜ν•€μ–‘μžμ μ„ μ œμ‘°ν•  수 μžˆμ—ˆλ‹€. ν™©μ‚°μ˜ μ΄‰λ§€μ‘°κ±΄μ—μ„œ μ‹œνŠΈλ₯΄μ‚°μ€ νƒˆμˆ˜κ³΅μ •μ„ ν†΅ν•˜μ—¬ ν‘μ—°μ˜ μ •μœ‘λ©΄μ²΄ ꡬ쑰λ₯Ό ν˜•μ„±ν•˜λ©° κ·Έλž˜ν•€ μ–‘μžμ μœΌλ‘œ λ³€ν•˜μ˜€λ‹€. λ˜ν•œ ν™©μ‚°κ³Ό λ””λ©”ν‹Έν¬λ¦„μ•„λ―Έλ“œκ°€ 각각 ν™©κ³Ό μ§ˆμ‚° 도핑 λ¬Όμ§ˆλ‘œμ„œ μ‚¬μš©λ˜μ–΄, 탄화정도가 쑰절되고, 그람 μŠ€μΌ€μΌμ˜, 그리고 높은 ν˜•κ΄‘μ–‘μžνš¨μœ¨(μ•½ 61%)을 가진 ν™©κ³Ό μ§ˆμ†Œκ°€ λ„ν•‘λœ κ·Έλž˜ν•€μ–‘μžμ μ„ μ œμ‘°ν•˜μ˜€λ‹€. λ³Έ μ—°κ΅¬μ—μ„œ μƒˆλ‘­κ²Œ κ°œλ°œν•œ ν•˜ν–₯식/상ν–₯식 접근방법은 μ œμ–΄λœ 크기 및 λͺ¨μ–‘을 μ§€λ‹Œ λ‹€μ–‘ν•œ μ’…λ₯˜μ˜ κ·Έλž˜ν•€μ–‘μžμ  μ œμ‘°μ— 적용될 수 있으며, 이λ₯Ό 톡해 μ „μž/κ΄‘μ „μž μž₯치, ν˜•κ΄‘ν”„λ‘œλΈŒ, λ°”μ΄μ˜€μ΄λ―Έμ§•, μ—λ„ˆμ§€λ³€ν™˜μž₯치λ₯Ό ν¬ν•¨ν•œ μ—¬λŸ¬κ°€μ§€ μ‘μš©λΆ„μ•Όμ— ν­λ„“κ²Œ ν™œμš©λ  수 μžˆμ„ κ²ƒμœΌλ‘œ μ‚¬λ£Œλœλ‹€.1. INTRODUCTION 28 1.1. Background 28 1.1.1. Graphene quantum dots 28 1.1.2. Synthesis of graphene quantum dots 30 1.1.2.1. Acidic oxidation 31 1.1.2.2. Hydrothermal and solvothermal method 35 1.1.2.3. Microwave- and sonication-assisted method 36 1.1.2.4. Electrochemical method 37 1.1.2.5. Bottom-up approach 40 1.1.3. Application fields 43 1.1.3.1. Bioimaging 43 1.1.3.2. Photoluminescence sensors 45 1.1.3.3. Catalyst for the oxygen reduction reaction 45 1.1.3.4. Organic photovoltaic devices 48 1.2. Objectives and Outlines 51 1.2.1. Objectives 51 1.2.2. Outlines 51 2. EXPERIMENTAL DETAILS 56 2.1. Top-down Approach for Fabricating Uniform Graphene Qauntum Dots with Sizes 56 2.1.1. Chemical oxidation of various types of carbon materials 56 2.1.2. Separation of graphene quantum dots via size-selective precipitation approach 56 2.2. Bottom-up Approach for Fabricating Graphene Quantum Dots based on Carbonization and Heteroatom Doping 57 2.2.1. Carbonization of citric acid 57 2.2.2. Controllable S, N-doping of graphene quantum dot 58 2.3. Applications 59 2.3.1. FRET-based dye-sensitized solar cells for near-infrared light harvesting 59 2.3.2. Graphene quantum dot-based fluorescent sensor for rapid and ultrasensitive detection of an anthrax biomarker 60 2.3.3. Photoinduced electron transfer based sensor probes for intracellular hydrogen peroxide 61 3. RESULTS AND DISCUSSION 65 3.1. Top-down Approach for Fabricating Uniform Graphene Qauntum Dots with Sizes 65 3.1.1. Chemical oxidation of various types of carbon materials 68 3.1.2. Separation of graphene quantum dots via size-selective precipitation approach 81 3.2. Bottom-up Approach for Fabricating Graphene Quantum Dots based on Carbonization and Heteroatom Doping 91 3.2.1. Carbonization of citric acid 93 3.2.2. Controllable S, N-doping of graphene quantum dot 93 3.3. Applications 110 3.3.1. FRET-based dye-sensitized solar cells for near-infrared light harvesting 110 3.3.2. Graphene quantum dot-based fluorescent sensor for rapid and ultrasensitive detection of an anthrax biomarker 130 3.3.3. Photoinduced electron transfer based sensor probes for intracellular hydrogen peroxide 145 4. CONCLUSIONS 169 REFERENCES 173 ꡭ문초둝 185Docto

    2차원 격자의 κ³ μ°¨ μœ„μƒ 띠 이둠

    No full text
    ν•™μœ„λ…Όλ¬Έ(석사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :μžμ—°κ³Όν•™λŒ€ν•™ λ¬Όλ¦¬Β·μ²œλ¬Έν•™λΆ€(물리학전곡),2020. 2. μ–‘λ²”μ •.Bulk-boundary correspondence is the fundamental property of topological phases. In conventional topological insulators, the gapped bulk states in d-dimensions support metallic states in (d-1)-dimensional surfaces. Recently, however, a class of topological crystalline insulators violating the conventional bulk-boundary correspondence has been proposed, and they are nowadays called higher-order topological insulators (HOTIs). In contrast to the conventional topological insulators, the gapless excitations of a HOTI in d-dimensions are localized in a subspace with a dimension lower than (d-1), such as corners or hinges, when the global shape of the material preserves the crystalline symmetry relevant to the nontrivial bulk band topology. In the thesis, we investigate novel properties that can appear in 2D higher-order insulators protected by crystalline symmetries. First, we show that the band topology of graphene with a Kekule texture is a 2D second-order insulator characterized by the 2D Z2 topological invariant w2, which is quantized in systems with inversion symmetry. Also, we propose monolayer graphdiyne (MGD) as the first realistic candidate material for 2D HOTIs protected by inversion symmetry which has same crystalline symmetries as Kekule textured graphene. We show that, despite the absence of chiral symmetry, the higher-order topology of MGD is manifested in the filling anomaly and charge accumulation at two corners. Interestingly, although its low-energy band structure can be properly described by using only pz orbital basis, the higher-order topology itself originates from the core electronic orbitals. We also show that the higher-order topology of MGD is the fundamental origin of the nontrivial band topology of ABC-stacked graphdiyne hosting monopole nodal lines and hinge states. Second, we establish the correspondence between the fractional charge bound to a vortex in textured lattice and the relevant bulk band topology in two-dimensional (2D) HOTIs. The fractional charge localized at a vortex in the Kekule texture is shown to be related to the change in the bulk topological invariant w2 around the vortex, as in the case of the Su-Schriefer-Heeger model in which the fractional charge localized at a domain wall is related to the change in the bulk charge polarization between degenerate ground states. We show that the effective three-dimensional (3D) Hamiltonian, where the angle theta around a vortex in Kekule-textured graphene is a third coordinate, describes a 3D axion insulator with a quantized magnetoelectric polarization. The spectral flow during the adiabatic variation of theta corresponds to the chiral hinge modes of an axion insulator and determines the accumulated charge localized at the vortex. For the cases when magnetoelectric polarization is quantized due to the presence of symmetry that reverses the space-time orientation, we classify all possible topological crystalline insulators whose vortex defect carries a fractional electric charge.벌크-경계 λŒ€μ‘μ„±μ€ μœ„μƒν•™μ  물질이 가지고 μžˆλŠ” κΈ°λ³Έ μ„±μ§ˆμ΄λ‹€. 전톡적인 μœ„μƒν•™μ  μ ˆμ—°μ²΄μ—μ„œ, d μ°¨μ›μ˜ μ ˆμ—°λ¬Όμ§ˆμ€ (d-1)차원 ν‘œλ©΄μ—μ„œ κΈˆμ† μƒνƒœλ₯Ό 가진닀. ν•˜μ§€λ§Œ μ΅œκ·Όμ— μ΄λŸ¬ν•œ 벌크-경계 λŒ€μ‘μ„±μ„ κΉ¨λŠ” μœ„μƒν•™μ  κ²°μ • μ ˆμ—°μ²΄μ˜ μ‘΄μž¬κ°€ μ†Œκ°œλ˜μ—ˆμœΌλ©° μ΄λŠ” κ³ μ°¨ μœ„μƒ μ ˆμ—°μ²΄λΌκ³  λΆˆλ¦°λ‹€. 전톡적인 μœ„μƒν•™μ  μ ˆμ—°μ²΄μ™€λŠ” λ‹€λ₯΄κ²Œ d차원 κ³ μ°¨ μœ„μƒ μ ˆμ—°μ²΄λŠ” 물질의 전체적인 λͺ¨μ–‘이 벌크 띠 μœ„μƒκ³Ό κ΄€λ ¨λœ κ²°μ • λŒ€μΉ­μ„ μœ μ§€λ  λ•Œ (d-1)차원 보닀 μž‘μ€ μ°¨μ›μ˜ 뢀뢄곡간인 κ²½μ²©μ΄λ‚˜ λͺ¨μ„œλ¦¬μ— κΈˆμ† μƒνƒœκ°€ κ΅­ν•œ λ˜μ–΄ μžˆλ‹€. 이 λ…Όλ¬Έμ—μ„œ, μš°λ¦¬λŠ” κ²°μ • λŒ€μΉ­μ— μ˜ν•΄ λ³΄ν˜Έλ˜λŠ” 2차원 κ³ μ°¨ μœ„μƒ μ ˆμ—°μ²΄μ— λ‚˜νƒ€λ‚  수 μžˆλŠ” μƒˆλ‘œμš΄ νŠΉμ„±μ„ μ‘°μ‚¬ν•œλ‹€. λ¨Όμ €, μš°λ¦¬λŠ” μΌ€μΏ¨λ ˆ κ·Έλž˜ν•€μ˜ 띠 μœ„μƒμ΄ λ°˜μ „ λŒ€μΉ­ μ‹œμŠ€ν…œμ—μ„œ μ–‘μžν™”λ˜λŠ” Z2 μœ„μƒ λΆˆλ³€ w2λ₯Ό νŠΉμ§•μœΌλ‘œν•˜λŠ” 2차원 κ³ μ°¨ μœ„μƒ μ ˆμ—°μ²΄μž„μ„ λ³΄μ˜€λ‹€. λ˜ν•œ, μΌ€μΏ¨λ ˆ κ·Έλž˜ν•€κ³Ό λ™μΌν•œ κ²°μ • λŒ€μΉ­μ„ κ°–λŠ” λ°˜μ „ λŒ€μΉ­μ— μ˜ν•΄ λ³΄ν˜Έλ˜λŠ” 2차원 κ³ μ°¨ μœ„μƒ μ ˆμ—°μ²΄μ— λŒ€ν•œ 졜초의 ν˜„μ‹€μ μΈ 후보 λ¬Όμ§ˆλ‘œμ„œ 단일 μΈ΅ κ·Έλž˜ν”„λ‹€μΈμ„ μ œμ•ˆν•œλ‹€. μΉ΄μ΄λž„ λŒ€μΉ­μ˜ λΆ€μž¬μ—λ„ λΆˆκ΅¬ν•˜κ³ , 단일 μΈ΅ κ·Έλž˜ν”„λ‹€μΈμ˜ κ³ μ°¨ μœ„μƒμ€ 채움 μ•„λ…Έλ§λ¦¬λ‘œ λ‚˜νƒ€λ‚œλ‹€. ν₯λ―Έλ‘­κ²Œλ„, μ—λ„ˆμ§€ μ „μž μ„±μ§ˆμ€ pz μ˜€λΉ„νƒˆ κΈ°λ°˜λ§Œμ„ μ‚¬μš©ν•˜μ—¬ μ˜¬λ°”λ₯΄κ²Œ μ„€λͺ… ν•  수 μžˆμ§€λ§Œ, κ³ μ°¨ μœ„μƒ μžμ²΄λŠ” 심뢀 μ „μž μ˜€λΉ„νƒˆμ—μ„œ λΉ„λ‘―λœλ‹€. μš°λ¦¬λŠ” λ˜ν•œ 단측 κ·Έλž˜ν”„λ‹€μΈμ˜ κ³ μ°¨ μœ„μƒμ΄ 홀극 λ§ˆλ””μ„ κ³Ό νžŒμ§€ μƒνƒœλ₯Ό κ°€μ§€λŠ” ABC κ·Έλž˜ν”„λ‹€μΈ 띠 μœ„μƒμ˜ κ·Όμ›μž„μ„ 보여쀀닀. λ‘λ²ˆμ§Έλ‘œ, μš°λ¦¬λŠ” 격자 μ†Œμš©λŒμ΄μ— κ΅¬μ†λœ λΆ„μˆ˜ μ „ν•˜μ™€ 2차원 κ³ μ°¨ μœ„μƒ μ ˆμ—°μ²΄μ˜ 벌크 띠 μœ„μƒμ΄ λŒ€μ‘λ¨μ„ 보인닀. Su-Schrieffer-Heeger λͺ¨λΈμ˜ ꡬ역 벽에 λΆ„μˆ˜ μ „ν•˜κ°€ κ΅­ν•œλœ 것이 μ „ν•˜ λΆ„κ·Ήμ˜ 차이에 μ˜ν•΄ λ‚˜νƒ€λ‚˜λŠ” 것 처럼 μΌ€μΏ¨λ ˆ 격자의 μ†Œμš©λŒμ΄μ— κ΅­ν•œλœ λΆ€λΆ„ μ „ν•˜λŠ” μ†Œμš©λŒμ΄ μ£Όμœ„μ˜ 벌크 μœ„μƒ λΆˆλ³€ w2의 변화와 κ΄€λ ¨μ΄μžˆλŠ” κ²ƒμœΌλ‘œ λ‚˜νƒ€λ‚œλ‹€. λ˜ν•œ μΌ€μΏ¨λ ˆ κ·Έλž˜ν•€μ—μ„œ μ†Œμš©λŒμ΄ μ£Όμœ„μ˜ 각도 thetaλ₯Ό μ„Έλ²ˆμ§Έ μ’Œν‘œλ‘œ λ‚˜νƒ€λƒˆμ„ λ•Œ λ§Œλ“€μ–΄μ§„ 3차원 ν•΄λ°€ν† λ‹ˆμ•ˆμ€ μ–‘μžν™” 된 자기 μ „κΈ° 뢄극을 κ°–λŠ” μ‚Όμ°¨ μ•‘μ‹œμ˜¨ μ ˆμ—°μ²΄μ„ μ„€λͺ…ν•œλ‹€. μ‹œκ³΅κ°„ λ°©ν–₯을 λ°˜μ „μ‹œν‚€λŠ” λŒ€μΉ­μ˜ 쑴재둜 인해 μ•‘μ‹œμ˜¨ μ ˆμ—°μ²΄κ°€ λ§Œλ“€μ–΄μ§€λŠ” κ²½μš°μ—, μš°λ¦¬λŠ” μ†Œμš©λŒμ΄κ°€ λΆ€λΆ„ μ „ν•˜λ₯Ό κ°–λŠ” λͺ¨λ“  κ°€λŠ₯ν•œ μœ„μƒ κ²°μ • μ ˆμ—°μ²΄λ₯Ό λΆ„λ₯˜ν•œλ‹€.Chapter 1 Introduction 1 1.1 Charge fractionalization in SSH model 2 1.1.1 Wilson loop and polarization 4 1.2 Chern Insulator 5 1.3 2D Z2 topological insulator 6 Chapter 2 2D higher-order TI 9 2.1 Inversion symmetric 2D higher-order TI 9 2.2 Kekule graphene 11 2.3 Monolayer graphdiyne 13 2.3.1 Corner Charges and Filling anomaly 15 Chapter 3 Fractional charge bound to a vortex in 2D HOTI 23 3.1 Higher-order band topology of Kekule textured graphene 25 3.2 Spectral flow and topological term 26 3.3 Generalization 28 Chapter 4 Summary 35 Appendix A Nested Wilson loop 39 Appendix B Classification of axion insulators by crystalline symmetries 43 Appendix C Wannier center and quantized fractional charge in topological vortex 55 Bibliography 59 초둝 65Maste

    λΉ λ₯Έ λ™νŠΉμ„±μ„ κ°–λŠ” deadbeat 인버터 μ „μ••μ œμ–΄ μ•Œκ³ λ¦¬μ¦˜

    No full text
    ν•™μœ„λ…Όλ¬Έ(석사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :전기·컴퓨터곡학뢀,2002.Maste

    Downward type deposition source and deposition apparatus having the same

    No full text
    λ³Έ 발λͺ…은, 본체와, 이 본체 내에 κ΅¬λΉ„λ˜κ³  μ¦μ°©λ¬Όμ§ˆμ„ μˆ˜μš©ν•˜λ˜ 개ꡬ된 μƒλΆ€μ—λŠ” 밀폐λ₯Ό μœ„ν•œ 컀버가 κ²°ν•©λ˜κ³  ν•˜λΆ€μ—λŠ” λ‹€κ³΅νŒμœΌλ‘œ 된 뢄사ꡬ가 ν˜•μ„±λœ λ„κ°€λ‹ˆμ™€, 이 λ„κ°€λ‹ˆμ˜ μ€‘κ°„λ†’μ΄μ—μ„œ λ„κ°€λ‹ˆλ₯Ό λ‘˜λŸ¬μ‹Έλ„λ‘ λ°°μΉ˜λ˜κ³ μ„œ 고주파 μœ λ„μ „λ₯˜κ°€ μΈκ°€λ˜λŠ” 제1코일 및, 이 제1μ½”μΌμ˜ μ•„λž˜μ—μ„œ 상기 λ„κ°€λ‹ˆμ˜ 뢄사ꡬλ₯Ό λ‘˜λŸ¬μ‹Έλ„λ‘ 배치되며 고주파 μœ λ„μ „λ₯˜κ°€ μΈκ°€λ˜λŠ” 제2코일을 ν¬ν•¨ν•˜λŠ” ν•˜ν–₯식 μ¦λ°œμ›κ³Ό 이λ₯Ό κ΅¬λΉ„ν•œ 증착μž₯μΉ˜μ— κ΄€ν•œ κ²ƒμœΌλ‘œ, λ³Έ 발λͺ…에 μ˜ν•˜λ©΄ 적어도 ν•˜λ‚˜μ˜ μ¦λ°œμ›μ„ 증착μž₯치의 μ±”λ²„μ˜ 상뢀에 λ°°μΉ˜ν•˜μ—¬ λΆ„μžμ„ μ΄ μ•„λž˜λ‘œ 곡급될 수 μžˆλ„λ‘ ν•˜κ³ μ„œ 고주파 μœ λ„κ°€μ—΄μ„ μ΄μš©ν•¨μœΌλ‘œμ¨, λŒ€λ©΄μ  κΈ°νŒμ— ν˜•μ„±λ˜λŠ” λ°•λ§‰μ˜ 균일도λ₯Ό ν™•λ³΄ν•˜κ³  μ†ŒμŠ€μ˜ κ°€μ—΄μ‹œκ°„μ„ 단좕할 수 μžˆμ–΄ μ €λΉ„μš©μ˜ λ°•λ§‰μ œμ‘°κ°€ κ°€λŠ₯ν•˜κ²Œ λ˜λŠ” νš¨κ³Όκ°€ 있게 λœλ‹€.본체와, 이 본체 내에 κ΅¬λΉ„λ˜κ³  μ¦μ°©λ¬Όμ§ˆμ„ μˆ˜μš©ν•˜λ˜ 개ꡬ된 μƒλΆ€μ—λŠ” 밀폐λ₯Ό μœ„ν•œ 컀버가 κ²°ν•©λ˜κ³  ν•˜λΆ€μ—λŠ” λ‹€κ³΅νŒμœΌλ‘œ 된 뢄사ꡬ가 ν˜•μ„±λœ λ„κ°€λ‹ˆμ™€, 이 λ„κ°€λ‹ˆμ˜ μ€‘κ°„λ†’μ΄μ—μ„œ λ„κ°€λ‹ˆλ₯Ό λ‘˜λŸ¬μ‹Έλ„λ‘ λ°°μΉ˜λ˜κ³ μ„œ 고주파 μœ λ„μ „λ₯˜κ°€ μΈκ°€λ˜λŠ” 제1코일 및, 이 제1μ½”μΌμ˜ μ•„λž˜μ—μ„œ 상기 λ„κ°€λ‹ˆμ˜ 뢄사ꡬλ₯Ό λ‘˜λŸ¬μ‹Έλ„λ‘ 배치되며 고주파 μœ λ„μ „λ₯˜κ°€ μΈκ°€λ˜λŠ” 제2코일을 ν¬ν•¨ν•˜λŠ” 것을 νŠΉμ§•μœΌλ‘œ ν•˜λŠ” ν•˜ν–₯식 μ¦λ°œμ›
    corecore