21 research outputs found
Mining Traversal Patterns from Weighted Traversals and Graph
μ€μΈκ³μ λ§μ λ¬Έμ λ€μ κ·Έλνμ κ·Έ κ·Έλνλ₯Ό μννλ νΈλμμ
μΌλ‘ λͺ¨λΈλ§λ μ μλ€. μλ₯Ό λ€λ©΄, μΉ νμ΄μ§μ μ°κ²°κ΅¬μ‘°λ κ·Έλνλ‘ ννλ μ μκ³ , μ¬μ©μμ μΉ νμ΄μ§ λ°©λ¬Έκ²½λ‘λ κ·Έ κ·Έλνλ₯Ό μννλ νΈλμμ
μΌλ‘ λͺ¨λΈλ§λ μ μλ€. μ΄μ κ°μ΄ κ·Έλνλ₯Ό μννλ νΈλμμ
μΌλ‘λΆν° μ€μνκ³ κ°μΉ μλ ν¨ν΄μ μ°Ύμλ΄λ κ²μ μλ―Έ μλ μΌμ΄λ€. μ΄λ¬ν ν¨ν΄μ μ°ΎκΈ° μν μ§κΈκΉμ§μ μ°κ΅¬μμλ μνλ κ·Έλνμ κ°μ€μΉλ₯Ό κ³ λ €νμ§ μκ³ λ¨μν λΉλ°νλ ν¨ν΄λ§μ μ°Ύλ μκ³ λ¦¬μ¦μ μ μνμλ€. μ΄λ¬ν μκ³ λ¦¬μ¦μ νκ³λ λ³΄λ€ μ λ’°μ± μκ³ μ νν ν¨ν΄μ νμ¬νλ λ° μ΄λ €μμ΄ μλ€λ κ²μ΄λ€.
λ³Έ λ
Όλ¬Έμμλ μνλ κ·Έλνμ μ μ μ λΆμ¬λ κ°μ€μΉλ₯Ό κ³ λ €νμ¬ ν¨ν΄μ νμ¬νλ λ κ°μ§ λ°©λ²λ€μ μ μνλ€. 첫 λ²μ§Έ λ°©λ²μ κ·Έλνλ₯Ό μννλ μ 보μ κ°μ€μΉκ° μ‘΄μ¬νλ κ²½μ°μ λΉλ° μν ν¨ν΄μ νμ¬νλ κ²μ΄λ€. κ·Έλν μνμ λΆμ¬λ μ μλ κ°μ€μΉλ‘λ λ λμκ°μ μ΄λ μκ°μ΄λ μΉ μ¬μ΄νΈλ₯Ό λ°©λ¬Έν λ ν νμ΄μ§μμ λ€λ₯Έ νμ΄μ§λ‘ μ΄λνλ μκ° λ±μ΄ λ μ μλ€. λ³Έ λ
Όλ¬Έμμλ μ’ λ μ νν μν ν¨ν΄μ λ§μ΄λνκΈ° μν΄ ν΅κ³νμ μ λ’° ꡬκ°μ μ΄μ©νλ€. μ¦, μ 체 μνμ κ° κ°μ μ λΆμ¬λ κ°μ€μΉλ‘λΆν° μ λ’° ꡬκ°μ ꡬν ν μ λ’° ꡬκ°μ λ΄μ μλ μνλ§μ μ ν¨ν κ²μΌλ‘ μΈμ νλ λ°©λ²μ΄λ€. μ΄λ¬ν λ°©λ²μ μ μ©ν¨μΌλ‘μ¨ λμ± μ λ’°μ± μλ μν ν¨ν΄μ λ§μ΄λν μ μλ€. λν μ΄λ κ² κ΅¬ν ν¨ν΄κ³Ό κ·Έλν μ 보λ₯Ό μ΄μ©νμ¬ ν¨ν΄ κ°μ μ°μ μμλ₯Ό κ²°μ ν μ μλ λ°©λ²κ³Ό μ±λ₯ ν₯μμ μν μκ³ λ¦¬μ¦λ μ μνλ€.
λ λ²μ§Έ λ°©λ²μ κ·Έλνμ μ μ μ κ°μ€μΉκ° λΆμ¬λ κ²½μ°μ κ°μ€μΉκ° κ³ λ €λ λΉλ° μν ν¨ν΄μ νμ¬νλ λ°©λ²μ΄λ€. κ·Έλνμ μ μ μ λΆμ¬λ μ μλ κ°μ€μΉλ‘λ μΉ μ¬μ΄νΈ λ΄μ κ° λ¬Έμμ μ 보λμ΄λ μ€μλ λ±μ΄ λ μ μλ€. μ΄ λ¬Έμ μμλ λΉλ° μν ν¨ν΄μ κ²°μ νκΈ° μνμ¬ ν¨ν΄μ λ°μ λΉλλΏλ§ μλλΌ λ°©λ¬Έν μ μ μ κ°μ€μΉλ₯Ό λμμ κ³ λ €νμ¬μΌ νλ€. μ΄λ₯Ό μν΄ λ³Έ λ
Όλ¬Έμμλ μ μ μ κ°μ€μΉλ₯Ό μ΄μ©νμ¬ ν₯νμ λΉλ° ν¨ν΄μ΄ λ κ°λ₯μ±μ΄ μλ ν보 ν¨ν΄μ κ° λ§μ΄λ λ¨κ³μμ μ κ±°νμ§ μκ³ μ μ§νλ μκ³ λ¦¬μ¦μ μ μνλ€. λν μ±λ₯ ν₯μμ μν΄ ν보 ν¨ν΄μ μλ₯Ό κ°μμν€λ μκ³ λ¦¬μ¦λ μ μνλ€.
λ³Έ λ
Όλ¬Έμμ μ μν λ κ°μ§ λ°©λ²μ λνμ¬ λ€μν μ€νμ ν΅νμ¬ μν μκ° λ° μμ±λλ ν¨ν΄μ μ λ±μ λΉκ΅ λΆμνμλ€.
λ³Έ λ
Όλ¬Έμμλ μνμ κ°μ€μΉκ° μλ κ²½μ°μ κ·Έλνμ μ μ μ κ°μ€μΉκ° μλ κ²½μ°μ λΉλ° μν ν¨ν΄μ νμ¬νλ μλ‘μ΄ λ°©λ²λ€μ μ μνμλ€. μ μν λ°©λ²λ€μ μΉ λ§μ΄λκ³Ό κ°μ λΆμΌμ μ μ©ν¨μΌλ‘μ¨ μΉ κ΅¬μ‘°μ ν¨μ¨μ μΈ λ³κ²½μ΄λ μΉ λ¬Έμμ μ κ·Ό μλ ν₯μ, μ¬μ©μλ³ κ°μΈνλ μΉ λ¬Έμ κ΅¬μΆ λ±μ΄ κ°λ₯ν κ²μ΄λ€.Abstract β
Ά
Chapter 1 Introduction
1.1 Overview
1.2 Motivations
1.3 Approach
1.4 Organization of Thesis
Chapter 2 Related Works
2.1 Itemset Mining
2.2 Weighted Itemset Mining
2.3 Traversal Mining
2.4 Graph Traversal Mining
Chapter 3 Mining Patterns from Weighted Traversals on
Unweighted Graph
3.1 Definitions and Problem Statements
3.2 Mining Frequent Patterns
3.2.1 Augmentation of Base Graph
3.2.2 In-Mining Algorithm
3.2.3 Pre-Mining Algorithm
3.2.4 Priority of Patterns
3.3 Experimental Results
Chapter 4 Mining Patterns from Unweighted Traversals on
Weighted Graph
4.1 Definitions and Problem Statements
4.2 Mining Weighted Frequent Patterns
4.2.1 Pruning by Support Bounds
4.2.2 Candidate Generation
4.2.3 Mining Algorithm
4.3 Estimation of Support Bounds
4.3.1 Estimation by All Vertices
4.3.2 Estimation by Reachable Vertices
4.4 Experimental Results
Chapter 5 Conclusions and Further Works
Reference
μ΅μ μ΄νν λ³νμμ λ°μμλμ μλ ₯μ΄ λ°μ΄μ€λ§€μ€μ ν΄μ€ν© λ°μμ λ―ΈμΉλ μν₯
νμλ
Όλ¬Έ(μμ¬)--μμΈλνκ΅ λνμ :λ°μ΄μ€μμ€ν
Β·μμ¬νλΆ(λ°μ΄μ€μμ€ν
곡ν),2008. 2.νμλ
Όλ¬Έ(μμ¬) -