6 research outputs found
์ฃผํ ๊ธฐ๋ฐ ๋ํน๊ณผ Ab Initio ๋ํน์ ์ด์ฉํ ๋จ๋ฐฑ์ง ๋ณตํฉ์ฒด ๊ตฌ์กฐ ์์ธก
ํ์๋
ผ๋ฌธ(๋ฐ์ฌ) -- ์์ธ๋ํ๊ต๋ํ์ : ์์ฐ๊ณผํ๋ํ ํํ๋ถ, 2021.8. ์์ฐจ์ฅ.Protein-protein interactions play crucial roles in diverse biological processes, including various disease progressions. Atomistic structural details of protein-protein interactions that can be obtained from protein complex structures may provide vital information for the design of therapeutic agents. However, a large portion of protein complex structures is hard to be experimentally captured due to their weak and transient protein-protein interactions. Indeed, a limited fraction of protein-protein interactions happening in the human body has been experimentally determined. Computational protein complex structure prediction methods have been spotlighted for their roles in providing insights into protein-protein interactions in the absence of complete structural information by experiment. In this dissertation, three protein complex structure prediction methods are explained: GalaxyTongDock, GalaxyHeteromer, and GalaxyHomomer2. GalaxyTongDock performs ab initio docking for structure prediction of hetero- and homo-oligomers. GalaxyHeteromer and GalaxyHomomer2 predict heterodimer and homo-oligomer structures, respectively, by template-based docking and ab initio docking depending on the template's availability. Lastly, examples of how these methods were utilized to predict protein complex structures in CASP and CAPRI, community-wide prediction experiments, are presented.๋จ๋ฐฑ์ง ์ฌ์ด์ ์ํธ์์ฉ์ ์ธํฌ๋ถ์ด, ํญ์์ฑ ์ ์ง, ๋ฉด์ญ๋ฐ์, ์ง๋ณ์ ๋ฐ์ ๋ฑ ๋ง์ ์๋ฌผํ์ ๊ณผ์ ์์ ํต์ฌ์ ์ธ ์ญํ ์ ํ๋ค. ๋จ๋ฐฑ์ง ๋ณตํฉ์ฒด ๊ตฌ์กฐ๋ก๋ถํฐ ์ป์ ์ ์๋ ๋จ๋ฐฑ์ง ์ํธ์์ฉ์ ๋ํ ๊ตฌ์กฐ์ ์ดํด๋ ํจ๊ณผ์ ์ธ ํญ์ฒด ์ ์ฝ, ๋จ๋ฐฑ์ง ์ํธ์์ฉ ์ ํด์ ๋ฑ์ ์ฝ๋ฌผ ์ค๊ณ๋ฅผ ์ํด ํ์์ ์ธ ์์์ด๋ค. ๊ทธ๋ฌ๋ ๋จ๋ฐฑ์ง ๋ณตํฉ์ฒด๋ ๋์ฒด๋ก ์ฝํ ์ํธ์์ฉ์ ์ํด ์ผ์์ ์ผ๋ก ํ์ฑ๋์ด ์คํ์ ํตํด ๊ฒฐ์ ํ๊ธฐ๊ฐ ์ด๋ ต๋ค. ์ค์ ๋ก ์ฐ๋ฆฌ ๋ชธ์์ ์ผ์ด๋๋ ์๋ง์ ๋จ๋ฐฑ์ง ์ํธ์์ฉ ์ค ๊ทนํ ์ผ๋ถ์ ๋ํด์๋ง ๋ณตํฉ์ฒด ๊ตฌ์กฐ๊ฐ ์๋ ค์ ธ ์๋ค. ์ปดํจํฐ๋ฅผ ์ด์ฉํ ๋จ๋ฐฑ์ง ๋ณตํฉ์ฒด ๊ตฌ์กฐ ์์ธก ๋ฐฉ๋ฒ์ ์คํ์ ์ํด ๊ฒฐ์ ๋ ๋จ๋ฐฑ์ง ๋ณตํฉ์ฒด ๊ตฌ์กฐ๊ฐ ์๋ ๊ฒฝ์ฐ์ ๋จ๋ฐฑ์ง ์ํธ์์ฉ์ ๋ํ ์ ๋ณด๋ฅผ ์ ๊ณตํ๋ ์ค์ํ ์ญํ ์ ํด์๋ค. ์ด ๋
ผ๋ฌธ์์๋ ๋จ๋ฐฑ์ง ๋ณตํฉ์ฒด ๊ตฌ์กฐ ์์ธก ๋ฐฉ๋ฒ์ธ GalaxyTongDock๊ณผ GalaxyHomomer2, GalaxyHeteromer์ ๋ํด์ ์๊ฐํ๋ค. GalaxyTongDock์ ab initio ๋ํน์ ํตํด ๋์ข
์ฌ๋ฆฌ๊ณ ๋จธ ๋จ๋ฐฑ์ง๊ณผ ์ด์ข
์ฌ๋ฆฌ๊ณ ๋จธ ๋จ๋ฐฑ์ง์ ๊ตฌ์กฐ๋ฅผ ์์ธกํ๋ค. GalaxyHomomer2์ GalaxyHeteromer๋ ๊ฐ๊ฐ ๋์ข
์ฌ๋ฆฌ๊ณ ๋จธ ๋จ๋ฐฑ์ง๊ณผ ์ด์ข
์ฌ๋ฆฌ๊ณ ๋จธ ๋จ๋ฐฑ์ง์ ๊ตฌ์กฐ๋ฅผ ์ฃผํ ๊ธฐ๋ฐ ๋ํน๊ณผ ab initio ๋ํน์ ๋ชจ๋ ์ด์ฉํ์ฌ ์์ธกํ๋ค. ๋ง์ง๋ง์ผ๋ก, ์ด ๋ฐฉ๋ฒ๋ค์ด ๊ตญ์ ๋จ๋ฐฑ์ง ๊ตฌ์กฐ ๋ฐ ๋ณตํฉ์ฒด ๊ตฌ์กฐ ์์ธก ๋ํ์ธ CASP๊ณผ CAPRI์์ ๋จ๋ฐฑ์ง ๋ณตํฉ์ฒด ๊ตฌ์กฐ๋ฅผ ์์ธกํ๊ธฐ ์ํด ์ด๋ป๊ฒ ํ์ฉ๋์๋์ง ๋ช ๊ฐ์ง ์์๋ฅผ ํตํด ์๊ฐํ๋ค.1. Introduction 1
2. GalaxyTongDock 4
2.1. Methods 4
2.2. Performance of GalaxyTongDock 21
3. GalaxyHeteromer 27
3.1. Methods 27
3.2. Performance of GalaxyHeteromer 34
4. GalaxyHomomer2 40
4.1. Methods 41
4.2. Performance of GalaxyHomomer2 47
5. CASP and CAPRI 54
5.1. CASP13 54
5.2. CASP14 57
5.3. CAPRI 64
6. Conclusion 65
7. References 67
๊ตญ๋ฌธ์ด๋ก 71
๊ฐ์ฌ์ ๊ธ 73๋ฐ
A Study on the Short-Term Demand Forecasting Model of Jeju Airport Passenger Using Internet Search Traffic
ํ์๋
ผ๋ฌธ(์์ฌ)--์์ธ๋ํ๊ต ๋ํ์ :ํ์ ๋ํ์ ๊ณต๊ธฐ์
์ ์ฑ
ํ๊ณผ,2019. 8. ์ด์์.์ด๋ ์ฐ์
๋ถ์ผ๋ฅผ ๋ง๋ก ํ๊ณ ์ ํํ ์์์์ธก์ ํด๋น ์ฐ์
์ ์ ์ ๊ณต๊ธ๋์ ๊ฒฐ์ ํ๊ธฐ ์ํ์ฌ ๋งค์ฐ ์ค์ํ๋ค. ํญ๊ณต๋ถ์ผ์ ์์์์ธก๋ ๋ง์ฐฌ๊ฐ์ง๋ก ์ ์ ์์ค๊ท๋ชจ์ ๊ฒฐ์ ๊ณผ ์์ค ์ด์๊ณํ์ ์๋ฆฝํ๊ธฐ ์ํ์ฌ ์ ํํ ์์ธก์ด ํ์์ ์ด๋ค. ํ์ง๋ง ๊ตญ๋ด์ ์์์์ธก์ ์ค์ฅ๊ธฐ ์์์์ธก๋ง ์ํํ๊ณ ์์ผ๋ฉฐ ๊ทธ ์ ํ์ฑ์ด ๋์ง ์์ ์ค์ฅ๊ธฐ ์์์์ธก์ ์คํจ๋ 18๋
ํ์ฌ ๊นํด๊ณตํญ, ์ ์ฃผ๊ณตํญ, ๋๊ตฌ๊ณตํญ ๋ฑ์ ๊ณตํญ์์ค ์ฉ๋ํฌํ๋ก ์ด์ด์ง๊ณ ์๋ค. ์ด์ ์ฒด๊ณ์ ์ด๊ณ ์ ํํ ๋จ๊ธฐ ์์์์ธก์ ์ฌ๊ฐ์์ ๊ธ์ฆ์ ์ถ์ธ๋ฅผ ๋ณด๋ค ๋น ๋ฅด๊ฒ ์๋ณดํ์ฌ ์ค์ฅ๊ธฐ ์์์์ธก์ ์๋๋ฌ ๋ณด์์ด ๊ฐ๋ฅ์ผ ํ๊ณ , ํฌํ๋ ๊ณตํญ์ ์ด์์ธก๋ฉด์ ๋จ๊ธฐ์ ๊ณํ ์กฐ์ ์ ์ฉ์ดํ๊ฒ ํ์ฌ ๊ทธ ํ์์ฑ์ด ๋๋ค.
๋จ๊ธฐ ์์์์ธก์ ์ํด์๋ ํญ๊ณต์์์ ํน์ฑ์ด ์ผ์ ํ ๊ณ์ ์ฑ๊ณผ ์ถ์ธ์ฑ์ ๊ฐ์ง๊ณ ์์ผ๋ฏ๋ก ์๊ณ์ด์ ์ธ ์์์์ธก ๋ชจํ์ ๊ธฐ๋ณธ์ผ๋ก ํ์์ผ๋ฉฐ, ์ฌ๊ฐ์์์ ๊ธ์ฆ ๋ฐ ๊ธ๊ฐ์ ๋จ๊ธฐ์ ๋ณ๋์ฑ์ ๋ฐ์ํ๊ธฐ ์ํ์ฌ ์ธํฐ๋ท ๊ฒ์ํธ๋ํฝ์ ์ฃผ๋ชฉํ์๋ค. ์ธํฐ๋ท ํ์ฉ์ด ๋์ ํ๋ ์ฌํ์์ ์ฌํ ์ ์ฌ์ ์ ์ฌํ์ ๋ณด๋ฅผ ์ธํฐ๋ท์ผ๋ก ๊ฒ์ํ๋ ํํ์ ์ฐฉ์ํ์ฌ ์ธํฐ๋ท ๊ฒ์ํธ๋ํฝ์ด ์ค์ ํญ๊ณต์์ ๋ฐ์์ ์ ํํ ๊ฒ์ผ๋ก ๋ณด์ ์ด ๊ฒ์ํธ๋ํฝ์ ์ถ์ด๋ฅผ ๋จ๊ธฐ ์์์์ธก ๋ชจํ์ ์ ์ฉํ์๋ค.
๋ณธ ์ฐ๊ตฌ์ ๋จ๊ธฐ ์์์์ธก ๋ชจํ์ ์ ์ฃผ๊ณตํญ ๊ตญ๋ด์ ์ถยท๋์ฐฉ ์ฌ๊ฐ ํฉ๊ณ๋ฅผ ๋์์ผ๋ก ํ์๋ค. ๊ทธ๊ฐ์ ์ฌ๊ฐ์ฒ๋ฆฌ ์ค์ ์ ๊ธฐ๋ฐ์ผ๋ก ์๊ณ์ด ๋ชจํ์ธ ๊ณ์ ์ ARIMA ๋ชจํ์ ๊ธฐ๋ณธ ๋ชจํ์ผ๋ก ํ์ฑํ์์ผ๋ฉฐ, ๋จ๊ธฐ์ ๋ณ๋์ฑ์ผ๋ก ๋ณผ ์ ์๋ ๊ณ์ ์ ARIMA ๋ชจํ์ ์์ฐจ๋ฅผ ๋ณด์ ํ๊ธฐ ์ํ ๋ฐฉ๋ฒ์ผ๋ก ์์ฐจ๋ฅผ ์ข
์๋ณ์, ์ธํฐ๋ท ๊ฒ์ํธ๋ํฝ์ ๋
๋ฆฝ๋ณ์๋ก ํ๋ ํ๊ท๋ชจํ์ ํ์ฑํ์ฌ ์ด๋ฅผ ๋ค์ ๊ณ์ ์ ARIMA ๋ชจํ๊ณผ ๊ฒฐํฉํ์ฌ ์ต์ข
ํผํฉ๋ชจํ์ ํ์ฑํ์๋ค.
์์ฐจ๋ฅผ ์ธํฐ๋ท ๊ฒ์ํธ๋ํฝ์ผ๋ก ์ ํฉ์ํค๋ ํ๊ท๋ชจํ์ ํ์ฑ์ ์ํ์ฌ ์ ์ฃผ์ฌํ๊ณผ ๊ด๋ จ๋ ๊ฒ์์ด ํ๋ณด๊ตฐ์ ์ ์ ํ์์ผ๋ฉฐ, ์ด ๊ฒ์ํธ๋ํฝ์ด ์ค์ ์์๋ณํ์ ์ ํํ๋ค๊ณ ๋ณด์ ์๊ฐ์ฐจ์ ๊ฐ๋
์ ์ ์ฉํ์๋ค.
์์ฐจ๋ฅผ ๋ณด์ ํ์ง ์์ ๊ณ์ ์ ARIMA ๋ชจํ๊ณผ ์ต์ข
ํผํฉ๋ชจํ์ ์์ธก ์ ํ์ฑ์ ๋น๊ต ๊ฒฐ๊ณผ ํ๊ท๋ชจํ ํ์ฑ ๊ตฌ๊ฐ์ธ ํธ๋ ์ด๋ ์ธํธ์์๋ MAPE๊ฐ ARIMA ๋ชจํ์ ๊ฒฝ์ฐ 3.84%, ํผํฉ๋ชจํ์ ๊ฒฝ์ฐ 3.21%๋ก 0.63%p ํฅ์๋์๋ค. ๊ทธ๋ฆฌ๊ณ ์ค์ ์์ธก์ผ๋ก ํ์ฉํ๋ ๊ตฌ๊ฐ์ธ ํ
์คํธ ์ธํธ์์๋ 3๊ฐ์ ๊ฐ ์์ธก์ ๊ฒฝ์ฐ MAPE๊ฐ ARIMA ๋ชจํ์ ๊ฒฝ์ฐ 3.21%, ํผํฉ๋ชจํ์ ๊ฒฝ์ฐ 2.54%๋ก 0.67%p ํฅ์๋์๋ค. ํ์ง๋ง 7๊ฐ์ ๊ฐ ์์ธก์ ๊ฒฝ์ฐ๋ ARIMA ๋ชจํ 2.95%, ํผํฉ๋ชจํ 4.27%๋ก ์ค์ฐจ์จ์ด 1.32%p ์ฆ๊ฐํ์๋ค. ์ด๋ ํ๊ท๋ชจํ์ ํ์ฑํ๋ ํธ๋ ์ด๋ ์ธํธ์ ์ผ๋ถ ๊ธฐ๊ฐ์์ ๊ธฐ์กด ์ถ์ธ์ ๋ค๋ฅด๊ฒ ๊ฐ์ํ์ฌ ๊นจ๋ํ์ง ๋ชปํ ์๊ณ์ด ์ถ์ธ๋ก ์ ํ๋๊ฐ ๋จ์ด์ง๋ ๊ฒฐ๊ณผ๋ก ์ด์ด์ก์ ๊ฐ๋ฅ์ฑ์ด ์์ง๋ง ๊ทธ๋ผ์๋ ๋ถ๊ตฌํ๊ณ 3๊ฐ์๊น์ง์ ์ด๋จ๊ธฐ ํญ๊ณต์์ ์์ธก์๋ ํผํฉ๋ชจํ์ด ๋ณด๋ค ์ ํ๋๊ฐ ํฅ์๋์์์ ํ์ธํ์๋ค.
๋ณธ ์ฐ๊ตฌ์์ ํ์ฉํ ์ธํฐ๋ท ๊ฒ์ํธ๋ํฝ์ ํ์ฉํ ๋ฏธ๋ ์์์์ธก ๋ฐฉ๋ฒ์ ํต์ฌ์ ์ ์ ํ ๊ฒ์ํธ๋ํฝ ๋ฐ์ดํฐ๋ฅผ ์ฐพ์๋ด๋ ๊ฒ์ด๋ผ ๋ณผ ์ ์๋ค. ๋ณธ ์ฐ๊ตฌ๋ฐฉ๋ฒ์ ํญ๊ณต๋ถ์ผ ๋ฟ ์๋๋ผ ๋ถ์ผ๋ฅผ ํ์ฅํ์ฌ ํ ์ฐ์
๊ตฐ์ ์์์์ธก์์๋ ์ค์ ์ ๋ง๊ฒ ํ์ฉํ๋ค๋ฉด ๋ณด๋ค ์์ธก๋ ฅ์ด ๋์ ๊ฒฐ๊ณผ๋ฅผ ์ป์ ์ ์์ ๊ฒ์ผ๋ก ๊ธฐ๋ํ๋ค.Accurate demand forecasts for any industry are important for determining the appropriate amount of supply for that industry. Likewise, demand forecasts for aviation are essential to determine the appropriate size of the facility and to establish a facility operating plan. However, in domestic airport policy, only mid- to long-term demand forecasts are implemented and the accuracy of the mid- to long-term demand forecast is not high.
So, the failure of the mid- to long-term demand forecast has led to the capacity saturation of airport facilities in Gimhae, Jeju and Daegu airports as of 2018. Thus, systematic and accurate short-term demand forecasts are needed to predict the trend of a surge in passenger demand more quickly. The recognition of the expected surge in passenger traffic makes it possible to quickly supplement mid- to long-term demand forecasts and facilitate short-term planning adjustments on the operational side of the saturated airport.
For short-term demand forecasts, the characteristics of air demand have a constant seasonality and trend, so a time-series demand prediction model was based on the basis of a time-series demand prediction model, and the Internet search traffic was noted to reflect the short-term volatility of the sharp increase and decline in passenger demand. In today's society with high Internet utilization, people search for travel information on the Internet before traveling. Thus, the trend of search traffic was applied to the short-term demand forecast model, as Internet search traffic is expected to precede actual air demand.
Based on past passenger demand, a time series model, the seasonal ARIMA model, was formed as a basic model. To compensate for the residuals of the seasonal ARIMA model, which can be referred to as short-term variability, a regression model with residuals as dependent variables and Internet search traffic as independent variables was formed. It was then combined with the seasonal ARIMA model to form the final mixed model.
To form a regression model that fits Internet search traffic into residuals, a group of search words related to Jeju trip was selected and the concept of time difference was applied as it was assumed that this search traffic precedes actual demand changes.
Comparing the predicted accuracy of the final mixed model with the seasonal ARIMA model that did not calibrate the residuals, the MAAPE improved 0.63%p to 3.84% for the ARIMA model and 3.21% for the mixed model in the training set, which is the regression model formation segment. In addition, in a test set that is used as an actual forecast, MAPE improved 0.67%p to 3.21% for ARIMA models and 2.54% for mixed models over a three-month period. However, for the seven-month forecast, ARIMA model 2.95% and mixed model 4.27% increased the error rate by 1.32%. This result may be the result of a series trend that is not clean, decreasing differently from normal trends in some periods of the training set forming the regression model. Nevertheless, short-term air demand forecasts up to three months confirmed that the mixed model was more accurate.
The key to the future demand prediction method using Internet search traffic used in this study can be to find appropriate search traffic data. This research method is expected to achieve more predictive results if it expands the aviation sector as well as other industrial groups' demand forecasts.์ 1 ์ฅ ์ ๋ก 1
์ 1 ์ ์ฐ๊ตฌ์ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์ 1
์ 2 ์ ์ฐ๊ตฌ์ ๋ฒ์ ๋ฐ ๋ฐฉ๋ฒ 5
2.1 ์ฐ๊ตฌ์ ๋ฒ์ 5
2.2 ์ฐ๊ตฌ์ ๋ฐฉ๋ฒ 5
์ 2 ์ฅ ์ด๋ก ์ ๋ฐฐ๊ฒฝ ๋ฐ ์ ํ์ฐ๊ตฌ ๊ฒํ 10
์ 1 ์ ํญ๊ณต์์ฅ๊ณผ ์์ 10
1.1 ํญ๊ณต์์์ ๊ณตํญ์์ค ์ฉ๋ 10
1.2 ํญ๊ณต์์ ์์ธก ๋ฐฉ๋ฒ 11
1.3 ํญ๊ณต์์ ์์ธก ์ ํ์ฐ๊ตฌ 15
์ 2 ์ ๋น
๋ฐ์ดํฐ ๋ถ์ ์์ธก 23
2.1 ๋น
๋ฐ์ดํฐ ๊ฐ์ 23
2.2 ์ธํฐ๋ท ๊ฒ์ ํธ๋ํฝ์ ํ์ฉํ ์์ธก ์ ํ์ฐ๊ตฌ 25
์ 3 ์ฅ ๋จ๊ธฐ ํญ๊ณต์์ ์์ธก๋ชจํ ๊ฐ๋ฐ 28
์ 1 ์ ๋จ๊ธฐ ํญ๊ณต์์ ์์ธก๋ชจํ ๊ฐ๋ฐ ์ ์ฐจ 28
์ 2 ์ ARIMA ๋ชจํ ๊ฐ๋ฐ 33
์ 3 ์ ํ๊ท ๋ฐ ํผํฉ๋ชจํ ๊ฐ๋ฐ 49
3.1 ๋
๋ฆฝ๋ณ์ 50
3.2 ์์ฐจ๊ฐ๋
์ ์ ์ฉํ ์๊ด๊ด๊ณ ๊ฒํ 51
3.3 ํ๊ท๋ชจํ ๋์ถ 53
์ 4 ์ ํผํฉ๋ชจํ ์๋ฎฌ๋ ์ด์
๋ฐ ์ ํ์ฑ ๊ฒ์ฆ 56
์ 4 ์ฅ ๊ฒฐ ๋ก 60
์ 1 ์ ์ฐ๊ตฌ๋ฐฉ๋ฒ ์์ฝ 60
์ 2 ์ ์ฐ๊ตฌ๊ฒฐ๊ณผ ์์ฝ 62
์ 3 ์ ์ฐ๊ตฌ์ ์์ 62
์ 4 ์ ์ฐ๊ตฌ์ ํ๊ณ์ 63
์ฐธ๊ณ ๋ฌธํ 65
Abstract 69Maste
๊ฑฐ์น ๋ ธ๋ฉด์์์ ์คํ ํ์ ์ ์ํ ํผ์ง ๋ก์ง์ ์ ์ฉ
ํ์๋
ผ๋ฌธ(์์ฌ)--์์ธ๋ํ๊ต ๋ํ์ :๊ธฐ๊ณ๊ณตํ๊ณผ,1997.Maste