14 research outputs found
REST์ Sp1์ ์ํ Brain specific homeobox ์ ์ ์์ ์ ์ฌ์กฐ์ ์ ๊ดํ ์ฐ๊ตฌ
Thesis(doctors) --์์ธ๋ํ๊ต ๋ํ์ :์๋ช
๊ณผํ๋ถ,2008.2.Docto
An Analysis of the Simplest Mixed Finite Element Method for the Elastic Wave Equation
ํ์๋
ผ๋ฌธ (์์ฌ)-- ์์ธ๋ํ๊ต ๋ํ์ : ์๋ฆฌ๊ณผํ๋ถ, 2015. 2. ์ ๋์ฐ.Although it is well-known that there are various mixed finite elements
for solving elastic wave equation, in this paper, we will approach the elastic
wave equation with 2D, the simplest mixed finite element method. The superiority
of the family of elements over the existing elements is its simplicity
and high accuracy. It satisfies the discrete inf-sup condition for the stability
analysis and has convergence property of the consistency error. In this paper,
by using this mixed finite element method, we will get the approximated
solution of the elastic wave equation, and also prove that this approximated
solution stably converges to real solution through elliptic projection.1 Introduction 1
2 Preliminaries 4
2.1 The model problem . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 A minimal element in 2D . . . . . . . . . . . . . . . . . . . . . 7
2.3 The elliptic problem . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Analysis of the Elastic Wave Equation 13
3.1 Problem setting . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Analysis of mixed finite element for an elliptic problem . . . . 14
3.3 Application to the elliptic projection operator . . . . . . . . . 21
3.4 Analysis of mixed finite element for an elastic wave equation . 22
4 Numerical Result 29
4.1 Numerical Result for elliptic problem . . . . . . . . . . . . . . 29
4.2 Numerical Result for elastic wave equation . . . . . . . . . . . 39
Abstract (in Korean)Maste