23 research outputs found

    Fabrication of Mechanically-active Anti-ReflectionSwitch (MARS)

    No full text
    Maste

    Reliability Study and Optimization of High Performance High-k/Metal Gate SiGe channel pMOSFETs

    No full text
    Doctor์ง€์†์ ์ธ CMOS ์†Œ์ž์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์„ ์œ„ํ•ด์„œ ์ตœ๊ทผ ๊ฒŒ์ดํŠธ ์ธต ์˜์—ญ๊ณผ ์ฑ„๋„ ์˜์—ญ์— ์ƒˆ๋กœ์šด ๋ฌผ์งˆ๊ณผ strain engineering์ด ์ ์šฉ ๋˜๊ณ  ์žˆ๋‹ค. ๊ฒŒ์ดํŠธ ์ ˆ์—ฐ์ธต์—๋Š” ๊ฒŒ์ดํŠธ ๋ˆ„์„ค ์ „๋ฅ˜๋ฅผ ์ค„์ด๋ฉด์„œ ๊ฒŒ์ดํŠธ ์ ˆ์—ฐ๋ง‰์˜ ๋ฌผ๋ฆฌ์ ์ธ ๋‘๊ป˜๋ฅผ ์ฆ๊ฐ€ ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ๊ณ ์œ ์ „์œจ ์ ˆ์—ฐ๋ง‰/ ๊ธˆ์† ๊ฒŒ์ดํŠธ์˜ ์ ์šฉ์ด ์„ฑ๊ณต์ ์œผ๋กœ ์ด๋ฃจ์–ด ์ง€๊ณ  ์žˆ๋‹ค. ๋˜ํ•œ ์ „์ž์ด๋™๋„ ํ–ฅ์ƒ์„ ์œ„ํ•˜์—ฌ strain ๊ธฐ์ˆ ๊ณผ ์ƒˆ๋กœ์šด ์ฑ„๋„ ๋ฌผ์งˆ๋กœ์„œ strained SiGe, contact edge stop layer (CESL), germanium ๋“ฑ ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ด๋ฃจ์–ด ์ง€๊ณ  ์žˆ๋‹ค. ๊ทธ ์ค‘ SiGe channel์€ Si ๊ณต์ •์— ์ ์šฉ์ด ์šฉ์ดํ•˜๊ณ  ๋†’์€ ์ „๊ณต ์ด๋™๋„ ํŠน์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๋งŽ์€ ์ฃผ๋ชฉ์„ ๋ฐ›๊ณ  ์žˆ๋‹ค. ์ตœ๊ทผ SiGe channel์— ๊ณ ์œ ์ „์œจ ์ ˆ์—ฐ๋ง‰์„ ์ ์šฉ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ๋งŽ์€ ์—ฐ๊ตฌ๊ฐ€ ์‹œ๋„๋˜๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ SiGe channel์„ ์ ์šฉ ์‹œํ‚ค๊ธฐ ์œ„ํ•ด์„œ๋Š” ํ•ด๊ฒฐํ•ด์•ผ ํ•˜๋Š” ๋งŽ์€ ๋ฌธ์ œ์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, SiGe channel์˜ ๋‘๊ป˜, germanium ๋†๋„, Si Capping layer ๋‘๊ป˜, Extension profile ๋“ฑ์€ germanium์˜ ๊ณ„๋ฉด์œผ๋กœ์˜ ํ™•์‚ฐ์— ์˜ํ–ฅ์„ ์ฃผ์–ด ์บ๋ฆฌ์–ด์˜ ์ด๋™๋„ ๊ฐ์†Œ, boron์˜ ํ™•์‚ฐ ์ฆ๊ฐ€๋กœ ์ธํ•œ ๋‹จ์ฑ„๋„ ํšจ๊ณผ ์ฆ๊ฐ€ ๋“ฑ์˜ ๋ฌธ์ œ์ ์„ ๋ฐœ์ƒ์‹œํ‚จ๋‹ค. ๋”ฐ๋ผ์„œ ์ด์™€ ๊ฐ™์€ ์š”์ธ๋“ค์— ๋Œ€ํ•œ ์ตœ์ ํ™”๋ฅผ ํ•˜๊ณ  ์˜ํ–ฅ์„ ๊ฐ์†Œ ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ˆ˜ํ–‰ ๋˜์–ด์•ผ ํ•œ๋‹ค. ์ด์™€ ๋”๋ถˆ์–ด ๊ธฐ์กด์— ๊ณ ์œ ์ „์œจ ๋ฌผ์งˆ์„ ์‚ฌ์šฉํ•  ๊ฒฝ์šฐ ๋งŽ์€ trap์„ ๋ฐœ์ƒ์‹œ์ผœ, ์‹ ๋ขฐ์„ฑ ๋ถ€๋ถ„์—์„œ ๋งŽ์€ ๋ฌธ์ œ๋ฅผ ๋ฐœ์ƒ์‹œ์ผœ์™”๋‹ค. ๋”ฐ๋ผ์„œ SiGe channel์„ ๊ณ ์œ ์ „์œจ ๋ฌผ์งˆ์— ์ ์šฉ ์‹œํ‚ค๊ธฐ ์œ„ํ•ด์„œ๋Š” ์‹ ๋ขฐ์„ฑ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํ•จ๊ป˜ ์ง„ํ–‰์ด ๋˜์–ด์•ผ ํ•œ๋‹ค.๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” SiGe channel ์„ฑ๋Šฅ ์ตœ์ ํ™”๋ฅผ ์œ„ํ•ด์„œ extension profile ๊ณผ Si capping layer ๋‘ ๊ฐ€์ง€ ์‚ฌํ•ญ์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ๋‹ค. ์‹ ๋ขฐ์„ฑ ์ธก๋ฉด์—์„œ๋Š” pMOSFET์—์„œ ๊ณ ์œ ์ „์œจ ๋ฌผ์งˆ์„ ์‚ฌ์šฉํ•˜๋ฉด์„œ ์„ฑ๋Šฅ ์—ดํ™”์˜ ์ฃผ์š” ๋ฉ”์ปค๋‹ˆ์ฆ˜์œผ๋กœ ์ง€์ ๋œ NBTI ํŠน์„ฑ์„ ์—ฐ๊ตฌ ํ•˜์˜€๋‹ค. ์ด์™€ ๋™์‹œ์— SiGe channel์˜ ์‚ฌ์šฉ์€ ์ „๊ณต์˜ ์ด๋™๋„๋ฅผ ํ–ฅ์ƒ ์‹œํ‚ค๋ฏ€๋กœ impact ionization์˜ ์ฆ๊ฐ€๋กœ ์ด์–ด์ง„๋‹ค. ๋”ฐ๋ผ์„œ HCI ํŠน์„ฑ์„ NBTI ํŠน์„ฑ๊ณผ ํ•จ๊ป˜ ์—ฐ๊ตฌํ•˜์—ฌ ๋น„๊ตํ•˜์˜€๋‹ค. SiGe์—์„œ๋Š” boron์˜ ์šฉํ•ด๋„๊ฐ€ Si ๋ณด๋‹ค ๋‚ฎ๊ธฐ ๋•Œ๋ฌธ์— boron์˜ ํ™•์‚ฐ์ด Si channel์— ๋น„ํ•ด์„œ ๋งŽ์ด ์ด๋ฃจ์–ด ์ง€๊ฒŒ ๋œ๋‹ค. ์ด๋กœ ์ธํ•ด์„œ shallow junction์„ ๋งŒ๋“ค๊ธฐ ํž˜๋“ค๊ฒŒ ๋˜๊ณ , ๋‹จ์ฑ„๋„ ํšจ๊ณผ ์—ดํ™” ํ˜„์ƒ์ด ๋‚˜ํƒ€๋‚˜๊ฒŒ ๋œ๋‹ค. ์ด์™€ ๊ฐ™์€ ํ˜„์ƒ์„ ์–ต์ œํ•˜๊ธฐ ์œ„ํ•ด์„œ Ge pre-amorphization implantation (PAI) ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค. Ge PAI ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•œ ๊ฒฐ๊ณผ EOT ์ฆ๊ฐ€๋‚˜ ๊ณ„๋ฉด ์—ดํ™”๋ฅผ ๋ฐœ์ƒ์‹œํ‚ค์ง€ ์•Š๊ณ , drain induced barrier lowering (DIBL), Vth roll off ์™€ ๊ฐ™์€ ๋‹จ์ฑ„๋„ ํšจ๊ณผ ์—ดํ™” ํ˜„์ƒ์„ ๊ฐ์†Œ์‹œํ‚ค๋Š” ๋™์‹œ์— Ion//Ioff ํŠน์„ฑ์„ ์ฆ๊ฐ€ ์‹œ์ผฐ๋‹ค. ์‹ ๋ขฐ์„ฑ ์ธก๋ฉด์—์„œ๋Š” Ge PAI๋ฅผ ์‚ฌ์šฉํ•˜์˜€์„ ๊ฒฝ์šฐ NBTI ํŠน์„ฑ์—์„œ๋Š” ๊ณ„๋ฉด ํŠน์„ฑ์— ์ฐจ์ด๊ฐ€ ๋‚˜ํƒ€๋‚˜์ง€ ์•Š์•˜์œผ๋ฏ€๋กœ ํฐ ์ฐจ์ด๋ฅผ ๋ณด์ด์ง€ ์•Š์•˜๋‹ค. Si channel๊ณผ SiGe channel์„ ๋น„๊ต ํ•˜์˜€์„ ๊ฒฝ์šฐ, ๋†’์€ ์—๋„ˆ์ง€ ์žฅ๋ฒฝ๊ณผ Si capping layer์˜ ์˜ํ–ฅ์œผ๋กœ SiGe channel์—์„œ NBTI์— ์˜ํ•œ ์—ดํ™” ํ˜„์ƒ์ด ๊ฐœ์„  ๋จ์„ ํ™•์ธ ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. Ge PAI๋Š” extension ์„ฑ๋ถ„์— ์˜ํ–ฅ์„ ๋ฏธ์ณค๊ธฐ ๋•Œ๋ฌธ์—, HC ์—ดํ™”์—์„œ๋Š”Ge PAI ์œ ๋ฌด์— ๋”ฐ๋ผ์„œ ์ฐจ์ด๊ฐ€ ๋‚˜ํƒ€๋‚ฌ๋‹ค. Ge PAI๋ฅผ ํ•  ๊ฒฝ์šฐ shallow junction์„ ๋งŒ๋“ค๊ฒŒ ๋˜๊ณ , ์ด์— ๋”ฐ๋ผ์„œ drain ์˜์—ญ์—์„œ Ge PAI๋ฅผ ํ•˜์ง€ ์•Š์•˜์„ ๋•Œ ๋ณด๋‹ค ๋” ๋งŽ์€ ์ „๊ณ„๊ฐ€ ๊ฑธ๋ฆฌ๊ฒŒ ๋œ๋‹ค. ๋”ฐ๋ผ์„œ HC์— ์˜ํ•œ ์—ดํ™”๊ฐ€ Ge PAI๋ฅผ ํ•  ๊ฒฝ์šฐ ๋” ๋งŽ์ด ์ผ์–ด ๋‚˜๊ฒŒ ๋œ๋‹ค. ์ด ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด์„œ Ge PAI๊ฐ€ ํšจ๊ณผ ์ ์œผ๋กœ ์†Œ์ž์˜ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ๊ฐ€์ € ์˜ด์„ ํ™•์ธ ํ•  ์ˆ˜ ์žˆ์—ˆ๊ณ , SiGe channel์„ ์‚ฌ์šฉ ํ•  ๊ฒฝ์šฐ HC์— ์˜ํ•œ ์—ดํ™” ํŠน์„ฑ์— ๋Œ€ํ•œ ๊ณ ๋ ค๊ฐ€ ํ•„์š”ํ•จ์„ ํ™•์ธ ํ•˜์˜€๋‹ค. Si channel MOSFET์—์„œ๋Š” NBTI์— ์˜ํ•œ ์„ฑ๋Šฅ ์„ฑ๋Šฅ ์—ดํ™”๋Š” ์ˆ˜์งํ•œ ์„ฑ๋ถ„์— ์˜ํ•œ ์˜ํ–ฅ์ด ์ฃผ์š” ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋ฉด์ ์— ๋Œ€ํ•œ ์˜์กด์„ฑ์ด ๋ฏธ๋น„ํ•˜๋‹ค. ํ•˜์ง€๋งŒ SiGe channel์—์„œ๋Š” ์ฑ„๋„ ๊ธธ์ด๋ฅผ ์ค„์—ฌ ๊ฐ€๋ฉด์„œ NBTI ํŠน์„ฑ์„ ์ธก์ •ํ•œ ๊ฒฐ๊ณผ ์„ฑ๋Šฅ ์—ดํ™”๊ฐ€ ์‹ฌํ•˜๊ฒŒ ๋‚˜ํƒ€๋‚˜๋Š” ํ˜„์ƒ์ด ๋ฐœ๊ฒฌ๋˜์—ˆ๋‹ค. ํ•˜์ง€๋งŒ ์ฑ„๋„ ํญ์„ ๋ณ€ํ™”์‹œ์ผœ ๊ฐ€๋ฉด์„œ NBTI ์—ดํ™”๋ฅผ ์ธก์ • ํ•œ ๊ฒฐ๊ณผ ์ฑ„๋„ ํญ์— ๋”ฐ๋ฅธ ์ฐจ์ด๋Š” ๊ฑฐ์˜ ๋‚˜ํƒ€๋‚˜์ง€ ์•Š์•˜๋‹ค. ์ด์™€ ๊ฐ™์ด SiGe channel์—์„œ NBTI ํŠน์„ฑ์ด ๊ธธ์ด์— ๋”ฐ๋ผ์„œ ์—ดํ™” ๋˜๋Š” ์ด์œ ๋Š”, ์•ž์—์„œ ์–ธ๊ธ‰ํ•œ boron์˜ ํ™•์‚ฐ ๋•Œ๋ฌธ์ด๋‹ค. Boron์ด ๊ณ„๋ฉด์— ๋“ค์–ด ๊ฐˆ ๊ฒฝ์šฐ, ์‚ฐํ™”๋ง‰์˜ ํŠน์„ฑ์„ ์—ดํ™” ์‹œํ‚ค๊ณ , ์ŠคํŠธ๋ ˆ์Šค์— ๋”ฐ๋ผ์„œ ์‰ฝ๊ฒŒ ๊ฒฐํ•ฉ์ด ๊นจ์ง€๊ฒŒ ๋œ๋‹ค. SiGe channel์—์„œ๋Š” boron์˜ SiGe์—์„œ์˜ ๋‚ฎ์€ ์šฉํ•ด๋„๋กœ ์ธํ•ด์„œ boron ํ™•์‚ฐ์ด ๋งŽ์ด ์ด๋ฃจ์–ด ์ง€๊ฒŒ ๋˜๊ณ , ์ฑ„๋„ ๊ธธ์ด๊ฐ€ ์งง์•„ ์งˆ์ˆ˜๋ก ์ „์ฒด ๋ฉด์ ์—์„œ ์ด์™€ ๊ฐ™์€ ํ™•์‚ฐ์ด ์ด๋ฃจ์–ด์ง„ ๋ถ€๋ถ„์˜ ๋ฉด์ ์ด ์ปค์ง€๋ฉด์„œ, NBTI ์—ดํ™”๊ฐ€ ๋งŽ์ด ์ด๋ฃจ์–ด ์ง€๊ฒŒ ๋œ๋‹ค. SiGe channel์—์„œ Si capping layer๋Š” ์†Œ์ž์˜ ์„ฑ๋Šฅ ๋ฐ ์‹ ๋ขฐ์„ฑ ์ธก๋ฉด์—์„œ ์˜ํ–ฅ์„ ๋ฏธ์น˜๊ฒŒ ๋œ๋‹ค. Si capping layer๋ฅผ ์‚ฌ์šฉํ•  ๊ฒฝ์šฐ Si/SiGe heterojunction์— quantum well์„ ์ƒ์„ฑํ•˜๊ฒŒ ๋œ๋‹ค. ๋”ฐ๋ผ์„œ ์ „๊ณต๊ณผ ๊ณ„๋ฉด๊ณผ์˜ ์‚ฐ๋ž€์„ ์ค„์ด๊ฒŒ ๋˜์–ด์„œ ์ด๋™๋„ ํ–ฅ์ƒ์„ ๊ฐ€์ ธ์˜จ๋‹ค. ๋˜ํ•œ SiGe channel์—์„œ ๋ฌธ์ œ๊ฐ€ ๋˜๋Š” ๊ณ„๋ฉด์œผ๋กœ์˜ germanium ํ™•์‚ฐ์„ ์–ต์ œํ•˜๊ฒŒ ๋œ๋‹ค. ์ด๋กœ ์ธํ•ด Si capping layer๋ฅผ ์‚ฌ์šฉํ•  ๊ฒฝ์šฐ ๊ณ„๋ฉด ํŠน์„ฑ์˜ ํ–ฅ์ƒ์„ ๊ฐ€์ ธ์˜จ๋‹ค. ์„ฑ๋Šฅ ํ‰๊ฐ€๋ฅผ ์œ„ํ•ด์„œ ์ฃผ๋กœ RF ํŠน์„ฑ์„ ์ธก์ •ํ•˜์—ฌ ๋น„๊ตํ•˜์˜€๋‹ค. ์ธก์ • ๊ฒฐ๊ณผ VCO, MIXER์™€ ๊ฐ™์€ RF ํšŒ๋กœ์—์„œ phase noise ๋ฐœ์ƒ์˜ ์ฃผ์š” ์›์ธ์ด ๋˜๋Š” ์ €์ฃผํŒŒ ๋…ธ์ด์ฆˆ ํŠน์„ฑ์ด Si capping layer๋ฅผ ์‚ฌ์šฉํ•  ๊ฒฝ์šฐ ํ–ฅ์ƒ ๋˜์—ˆ๋‹ค. ๋˜ํ•œ, RFํšŒ๋กœ์—์„œ ์†Œ์ž๊ฐ€ ๋ฐœ์ƒ ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ์ฃผํŒŒ์ˆ˜๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” figures of merit์ธ cut-off frequency (fT) ์™€ maximum oscillation frequency (fmax) ํŠน์„ฑ์ด Si capping layer๋ฅผ ์‚ฌ์šฉํ•  ๊ฒฝ์šฐ ํ–ฅ์ƒ ๋˜์—ˆ๋‹ค. Si channel๊ณผ ๋น„๊ต ํ•˜์˜€์„ ๊ฒฝ์šฐ์—๋„ ์•ฝ 20~30 % ํ–ฅ์ƒ ๋œ ํŠน์„ฑ์„ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ์‹ ๋ขฐ์„ฑ ์ธก๋ฉด์—์„œ๋Š” germanium ํ™•์‚ฐ์„ ๋ฐฉ์ง€ ํ•˜์—ฌ์„œ ๊ณ„๋ฉด ํŠน์„ฑ์ด Si capping layer๋ฅผ ์‚ฌ์šฉํ•  ๊ฒฝ์šฐ ๊ฐœ์„  ๋˜๊ฒŒ ๋œ๋‹ค. ์ด๋Š” ์ €์ฃผํŒŒ ์žก์Œ ์ธก์ •๊ณผ charge pumping current ์ธก์ •์„ ํ†ตํ•ด์„œ ํ™•์ธ ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ NBTI ์ŠคํŠธ๋ ˆ์Šค์— ์˜ํ•œ ์†Œ์ž์˜ ์—ดํ™”๊ฐ€ Si capping layer๋ฅผ ์‚ฌ์šฉํ•  ๊ฒฝ์šฐ ๊ฐ์†Œ ํ•˜์˜€๋‹ค. ๋ฐ˜๋ฉด HCI ์ŠคํŠธ๋ ˆ์Šค์— ์˜ํ•œ ์„ฑ๋Šฅ ์—ดํ™”๋Š” Si capping layer๋ฅผ ์‚ฌ์šฉํ•  ๊ฒฝ์šฐ ์ฆ๊ฐ€ํ•˜์˜€๋‹ค. ์ด๋Š” ์„ฑ๋Šฅ ํ–ฅ์ƒ์œผ๋กœ ์ธํ•œ impact ionization์˜ ์ฆ๊ฐ€ ๋•Œ๋ฌธ์ด๋‹ค. ํ•˜์ง€๋งŒ NBTI์™€ HCI์œผ๋กœ ์ธํ•œ ์†Œ์ž์˜ ์ˆ˜๋ช…์„ ๊ณ„์‚ฐํ•œ ๊ฒฐ๊ณผ ๋™์ž‘ ์ „์•• ์˜์˜์—์„œ๋Š” NBTI์— ์˜ํ•œ ์—ดํ™”๊ฐ€ ์ค‘์š”ํ•œ ์š”์†Œ๋กœ ์ž‘์šฉํ•˜๊ณ  ์žˆ์Œ์„ ํ™•์ธ ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ Si capping layer๊ฐ€ ์„ฑ๋Šฅ ํ–ฅ์ƒ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์‹ ๋ขฐ์„ฑ ํ–ฅ์ƒ์„ ์œ„ํ•ด์„œ๋„ ํ•„์š”ํ•จ์„ ํ™•์ธ ํ•˜์˜€๋‹ค.To achieve continuous performance enhancement, strain engineering and new materials for the gate stack and channel regions should be implemented in CMOS technology. High-k/metal gate stacks to reduce leakage current and decrease equivalent oxide thickness (EOT) have been successfully adopted in MOS field-effect transistor (MOSFET). Hf-based high-k films (HfO2 and HfSiO2) have been considered the most promising candidate for manufacturable high-k material because of its thermal stability, low interface states, and low leakage current. Also, strain engineering and new channel materials such as strained silicon-germanium, a contact edge stop layer (CESL), or germanium have been investigated to improve CMOS devices because of their better ability to enhance mobility and on-current than silicon. Among them, a SiGe channel is widely used because of its high hole mobility and good process compatibility with Si. Much work has focused on integrating metal/high-k gate stacks using this technology. Already, several groups have reported high performance metal/high-k gate stack SiGe pMOSFETs.However, there are still unresolved issues in using SiGe channels in MOSFETs. For example, the SiGe layer thickness, Ge concentration, and Si cap layer thickness affect Ge diffusion, the interface state, and carrier mobility. Therefore, significant effort has been invested in optimizing these factors and reliability characteristics should be investigated. We focused on the effects of extension profile engineering and the role of a Si capping layer in SiGe channel pMOSFETs.The effects of extension profile engineering to suppress boron transient enhanced diffusion (TED) are investigated in Si/SiGe channel pMOSFET. In performance, Ge pre-amorphization implantation (PAI) samples exhibit low drain-induced barrier lowering (DIBL) and a good Ion/Ioff ratio due to suppressed boron diffusion. In reliability, negative bias temperature instability (NBTI) degradation is reduced in Si/SiGe channel pMOSFETs, but hot carrier injection (HCI) degradation is worsened, especially in Ge PAI samples. The results suggest that HCI is an important factor in limiting device life time in Si/SiGe channel pMOSFETs.In addition to this, we present boron transient enhanced diffusion (TED) effects on negative bias temperature instability (NBTI) in SiGe channel pMOSFETs. In the SiGe channel pMOSFETs, the Vth shift is severe as gate length decreased under NBTI conditions. However, in the Si channel pMOSFETs, NBTI degradation doesnโ€™t depend on gate length. Because boron solid solubility is lower in germanium than in silicon, boron diffusion is higher in SiGe channel pMOSFETs. These effects become severe as the gate length decreases and induces more NBTI degradation in short channel SiGe pMOSFETs. When pre-amorphization implantation is used to suppress boron TED, the gate length dependency in NBTI is diminished.Next, we present a comparative study of the effects of the Si capping layer on SiGe channel pMOSFETs for radio frequency (RF) applications. The drive current is increased in Si-capped devices because Si/SiGe heterojunction layers form a SiGe quantum well (QW), which reduces carrier scattering. Conversely, due to Ge diffusing into the gate dielectric, SiGe samples without a Si capping layer suffer severe interface degradation. When using a Si capping layer, RF performance is enhanced and low frequency noise, a key factor in determining phase noise, is reduced. The RF figures of merit (FOM), such as the cut-off frequency (fT) and maximum oscillation frequency (fmax), increase. These results show that a Si capping layer should be used in SiGe channel pMOSFETs.The effect of a Si capping layer on the reliability of compressively strained SiGe channel pMOSFETs is also studied. A Si capping layer forms a SiGe quantum well (QW) and mitigates Ge out-diffusion in the interface. Thus, the Si capped device exhibits improved interface quality which results in increased device performance and greater robustness in negative bias temperature instability (NBTI) stress. Calculated device life time shows that NBTI is a limit device life-time in operation voltage region of 1.2 V. The presented results show that a Si capping layer used in SiGe channel pMOSFETs increases both reliability and performance
    corecore