49 research outputs found

    Focused on the Supplementary Budget in Special Committee on Budget and Accounts

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ํ–‰์ •๋Œ€ํ•™์› ๊ธ€๋กœ๋ฒŒํ–‰์ •์ „๊ณต, 2021. 2. ๊น€์ค€๊ธฐ.The budget deliberation of the National Assembly has been criticized for its short deliberation period and nontransparent decision-making process, which allows lawmakers to use their political influence on the purpose of securing larger budget benefits for constituencies or political parties. However, there is a lack of empirical analysis of legislatorโ€™s political influence on the adoption of budget requests, including institutional positions, seniority, and party affiliation. This study was intended to empirically analyze whether the political influence of lawmakers affects the adoption of budget requests based on the data of the Special Committee on Budget and Accounts (SCBA). This study analyzed the budget deliberations on the supplementary budget bills for the fiscal years from 2013 to 2019. According to this analysis, if the member who proposed the budget request is a subcommittee member of the SCBA, the probability of that memberโ€™s budget request being adopted is about twice as high as a request made by a nonmember. This means that the subcommittee members can secure more budget benefits because of their subcommittee membership. However, there is no significant statistical evidence that a senior member secures more budget benefits than a junior member. Additionally, this study cannot find significant statistical evidence that the ruling partyโ€™s members enjoy more advantages than the members of the opposition party in the budget process. This implies that the legislators are likely to build cooperation with members of the other party. Thus, it is necessary to improve the budget deliberation process to prevent the misuse of SCBA subcommittee membership in securing a self-interested budget. Possible alternatives may be to give sufficient information and time for checking the effectiveness and feasibility of budget requests. Furthermore, an improvement in transparency, strengthening the role of the standing committee, and an extension of SCBA membersโ€™ terms are expected to reduce the political influence of SCBA subcommittee members on the budget deliberation process.๊ตญํšŒ ์˜ˆ์‚ฐ ์‹ฌ์˜๊ณผ์ •์€ ์งง์€ ์‹ฌ์˜ ๊ธฐ๊ฐ„๊ณผ ๋ถˆํˆฌ๋ช…ํ•œ ์‹ฌ์‚ฌ ๋ฐฉ์‹์œผ๋กœ ์ธํ•ด, ๊ตญํšŒ์˜์›๋“ค์ด ์ •์น˜์  ์˜ํ–ฅ๋ ฅ์„ ํ™œ์šฉํ•˜์—ฌ ์ •๋‹น์ด๋‚˜ ์œ ๊ถŒ์ž ๋“ฑ์„ ์œ„ํ•œ ์ด์ต์„ ํ™•๋ณดํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๋น„ํŒ์ด ์ œ๊ธฐ๋˜์–ด ์™”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹ค์ œ๋กœ ๊ตญํšŒ์˜์›์˜ ์ง€์œ„, ์„ ์ˆ˜, ์†Œ์† ์ •๋‹น ๋“ฑ ์ •์น˜์  ์˜ํ–ฅ๋ ฅ์ด ์˜ˆ์‚ฐ ์ฆ์•ก ์š”๊ตฌ์˜ ์ฑ„ํƒ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”์ง€์— ๋Œ€ํ•ด์„œ๋Š” ์‹ค์ฆ์  ๋ถ„์„์€ ๋ถ€์กฑํ•œ ํŽธ์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ์˜ˆ์‚ฐ์•ˆ ์‹ฌ์‚ฌ ๊ณผ์ •์—์„œ ์ฆ์•ก ์š”๊ตฌ ์˜๊ฒฌ์„ ์ œ์‹œํ•œ ๊ฐœ๋ณ„ ๊ตญํšŒ์˜์›์˜ ์ •์น˜์  ์˜ํ–ฅ๋ ฅ์ด ์ฆ์•ก ์˜๊ฒฌ์˜ ์ฑ„ํƒ ์—ฌ๋ถ€์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์ง€, ์˜ˆ์‚ฐ๊ฒฐ์‚ฐํŠน๋ณ„์œ„์›ํšŒ ์˜ˆ์‚ฐ์กฐ์ •์†Œ์œ„์›ํšŒ์˜ ์‹ฌ์‚ฌ ๊ธฐ์ดˆ ์ž๋ฃŒ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์‹ค์ฆ์ ์œผ๋กœ ๋ถ„์„ํ•ด ๋ณด๊ณ ์ž ํ•˜์˜€๋‹ค. ์ด๋ฅผ ์œ„ํ•˜์—ฌ ๋ณธ ๋…ผ๋ฌธ์€ 2013๋…„๋ถ€ํ„ฐ 2019๋…„๊นŒ์ง€ ์ถ”๊ฐ€๊ฒฝ์ •์˜ˆ์‚ฐ์•ˆ์— ๋Œ€ํ•œ ๊ตญํšŒ ์˜ˆ์‚ฐ๊ฒฐ์‚ฐํŠน๋ณ„์œ„์›ํšŒ์˜ ์˜ˆ์‚ฐ ์ฆ์•ก ์š”๊ตฌ๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋ถ„์„ ๊ฒฐ๊ณผ, ํ•ด๋‹น ์ฆ์•ก์˜๊ฒฌ์„ ์ œ์•ˆํ•œ ์˜์›์— ์˜ˆ์‚ฐ๊ฒฐ์‚ฐํŠน๋ณ„์†Œ์œ„์›ํšŒ ๊ฐ„์‚ฌ์ด๊ฑฐ๋‚˜ ์†Œ์œ„์›ํšŒ ์œ„์›์ด ํฌํ•จ๋œ ๊ฒฝ์šฐ ๋‹นํ•ด ์ฆ์•ก์˜๊ฒฌ์ด ์ฑ„ํƒ๋  ๊ฒฝํ–ฅ์ด ๊ทธ๋ ‡์ง€ ์•Š์€ ์˜๊ฒฌ๋ณด๋‹ค ์•ฝ 2๋ฐฐ ์ •๋„ ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ฆ์•ก ์˜๊ฒฌ์„ ์ œ์‹œํ•œ ๊ตญํšŒ์˜์›์˜ ์„ ์ˆ˜๋Š” ์ฆ์•ก ์˜๊ฒฌ์˜ ์ฑ„ํƒ์— ์œ ์˜๋ฏธํ•œ ์˜ํ–ฅ์„ ์ฃผ์ง€ ์•Š๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋˜ํ•œ, ์—ฌ๋‹น ์˜์›์ด ์ œ์•ˆํ•œ ์˜ˆ์‚ฐ ์ฆ์•ก ์š”๊ตฌ๊ฐ€ ์•ผ๋‹น ์˜์›์˜ ์˜ˆ์‚ฐ ์ฆ์•ก ์š”๊ตฌ์— ๋น„ํ•ด ์ฑ„ํƒ๋  ํ™•๋ฅ ์ด ๋†’์„ ๊ฒƒ์ด๋ผ๋Š” ๊ฐ€์„ค์€ ์„ฑ๋ฆฝํ•˜์ง€ ์•Š์€ ๋ฐ˜๋ฉด, ์—ฌ์•ผ ์˜์›์ด ํ•จ๊ป˜ ์˜ˆ์‚ฐ ์ฆ์•ก ์˜๊ฒฌ์„ ์ œ์•ˆํ•  ๊ฒฝ์šฐ ์•ผ๋‹น ์˜์›๋งŒ ์ œ์•ˆํ•œ ๊ฒฝ์šฐ๋ณด๋‹ค ์ฑ„ํƒ๋  ํ™•๋ฅ ์ด ์•ฝ 2๋ฐฐ ์ •๋„ ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด, ํ˜„ํ–‰ ์˜ˆ์‚ฐ ์‹ฌ์˜์ œ๋„ ํ•˜์—์„œ ์ฆ์•ก์˜๊ฒฌ ์ œ์•ˆ์ž๊ฐ€ ์˜ˆ์‚ฐ๊ฒฐ์‚ฐํŠน๋ณ„์œ„์›ํšŒ์˜ ์˜ˆ์‚ฐ์กฐ์ •์†Œ์œ„์›ํšŒ ์œ„์›์ผ ๊ฒฝ์šฐ ํ•ด๋‹น ์˜๊ฒฌ์˜ ์ฑ„ํƒ ์—ฌ๋ถ€์— ๊ธ์ •์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์„ ์ž…์ฆํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ, ์—ฌ๋‹น๊ณผ ์•ผ๋‹น์€ ์˜ˆ์‚ฐ ์ฆ์•ก ์š”๊ตฌ์˜ ๋ฐ˜์˜์„ ์œ„ํ•ด ์„œ๋กœ ํ˜‘๋ ฅํ•˜๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ ์˜ˆ์‚ฐ๊ฒฐ์‚ฐํŠน๋ณ„์œ„์›ํšŒ์˜ ์˜ˆ์‚ฐ์กฐ์ •์†Œ์œ„์›ํšŒ์˜ ์œ„์›์ด ํ•ด๋‹น ์ง€์œ„์— ๋”ฐ๋ฅธ ์ •์น˜์  ์˜ํ–ฅ๋ ฅ์„ ๋‚จ์šฉํ•˜์—ฌ ๋ณธ์ธ์˜ ์ •์น˜์  ์ด์ต์„ ์œ„ํ•œ ์˜ˆ์‚ฐ์„ ํš๋“ํ•  ๊ฐ€๋Šฅ์„ฑ์„ ๋ฐฉ์ง€ํ•  ์ˆ˜ ์žˆ๋„๋ก ์˜ˆ์‚ฐ์‹ฌ์˜ ์ œ๋„์˜ ๊ฐœ์„ ์ด ํ•„์š”ํ•˜๋‹ค. ์ด๋ฅผ ์œ„ํ•˜์—ฌ ์˜ˆ์‚ฐ ๊ฒฐ์ •๊ถŒ์ž์—๊ฒŒ ์˜ˆ์‚ฐ ์ฆ์•ก ์š”๊ตฌ ์‚ฌ์—… ์ž์ฒด์˜ ํƒ€๋‹น์„ฑ์„ ๊ฒ€์ฆํ•  ์ˆ˜ ์žˆ๋„๋ก ์ถฉ๋ถ„ํ•œ ์ •๋ณด์™€ ์‹œ๊ฐ„์„ ์ œ๊ณตํ•˜๋Š” ๋ฐฉ์•ˆ์„ ๊ฒ€ํ† ํ•ด ๋ณผ ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ, ์˜ˆ์‚ฐ์ฆ์•ก ์‹ฌ์‚ฌ๊ณผ์ •์˜ ์ •๋ณด๋ฅผ ๋Œ€์ค‘์—๊ฒŒ ๊ณต๊ฐœํ•˜์—ฌ ํˆฌ๋ช…์„ฑ์„ ๋†’์ด๊ณ , ์ƒ์ž„์œ„์›ํšŒ์˜ ์˜ˆ์‚ฐ ์‹ฌ์˜ ๊ถŒํ•œ์„ ๋‚ด์‹คํ™”ํ•˜๋ฉฐ, ์˜ˆ์‚ฐ๊ฒฐ์‚ฐํŠน๋ณ„์œ„์›ํšŒ ์œ„์›์˜ ์ž„๊ธฐ๋ฅผ ์—ฐ์žฅํ•จ์œผ๋กœ์จ ์˜ˆ์‚ฐ์กฐ์ •์†Œ์œ„์›ํšŒ ์œ„์›์˜ ์ •์น˜์  ์˜ํ–ฅ๋ ฅ์„ ์ค„์ด๋Š” ๋Œ€์•ˆ๋„ ๊ณ ๋ คํ•ด ๋ณผ ์ˆ˜ ์žˆ๋‹ค.Chapter 1. Introduction ๏ผ‘ Chapter 2. Theoretical Background and Previous Research ๏ผ” 2.1. The Budget Deliberation Process of the National Assembly ๏ผ” 2.1.1. The Submission of the Executive Budget Bill ๏ผ• 2.1.2. The Budget Deliberation of National Assembly ๏ผ– 2.2. Theoretical Background ๏ผ‘๏ผ’ 2.2.1. Budget Theory: Rationalism and Incrementalism ๏ผ‘๏ผ’ 2.2.2. Public Choice Theory ๏ผ‘๏ผ” 2.2.3. The Theory of Pork-barrel Politics ๏ผ‘๏ผ— 2.3. Previous Research on Korean Budget Deliberations ๏ผ’๏ผ• Chapter 3. Research Design ๏ผ“๏ผ‘ 3.1. Theoretical Framework and Hypotheses ๏ผ“๏ผ‘ 3.2. Variables ๏ผ“๏ผ” 3.2.1. Dependent Variable ๏ผ“๏ผ” 3.2.2. Independent Variables ๏ผ“๏ผ• 3.2.3. Control Variables ๏ผ“๏ผ– 3.3. Data ๏ผ”๏ผ 3.4. Methodology ๏ผ”๏ผ“ Chapter 4. Result ๏ผ”๏ผ• 4.1. Descriptive Statistics ๏ผ”๏ผ• 4.2. Binary Logistic Model ๏ผ”๏ผ˜ 4.3. Analysis Results ๏ผ”๏ผ˜ Chapter 5. Conclusion ๏ผ•๏ผ• 5.1. Summary ๏ผ•๏ผ• 5.2. Policy Implications ๏ผ•๏ผ— 5.2.1. Strengthen Analysis on Budget Requests ๏ผ•๏ผ˜ 5.2.2. Controlling the Power of Special Committee of Budget and Accounts ๏ผ–๏ผ 5.3. Study Limitations ๏ผ–๏ผ“ Bibliography ๏ผ–๏ผ• Abstract in Korean ๏ผ—๏ผ“Maste

    Relation of Inappropriate Left Ventricular Hypertrophy on Framingham Risk Score and Vascular Stiffness in Hypertensive Women

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ž„์ƒ์˜๊ณผํ•™๊ณผ, 2015. 2. ๊น€์šฉ์ง„.์„œ๋ก : ๊ณ ํ˜ˆ์•• ํ™˜์ž์—์„œ ์ขŒ์‹ฌ์‹ค๋น„๋Œ€๋Š” ํ›„๋ถ€ํ•˜์— ๋”ฐ๋ฅธ ๋ณด์ƒ์  ๊ธฐ์ „์ด์ž ์‹ฌ์งˆํ™˜์„ ์œ ๋ฐœํ•˜๋Š” ๋‹จ๊ณ„๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ขŒ์‹ฌ์‹ค๋น„๋Œ€๋Š” ์ขŒ์‹ฌ์‹ค๊ธฐ๋Šฅ๊ณผ ํ˜ˆ๊ด€์˜ ๊ฒฝ์ง๋„๋Š” ์„ฑ๋ณ„์— ๋”ฐ๋ผ ๋‹ฌ๋ผ ํ˜ˆ๋ฅ˜์—ญํ•™์  ๋ถ€ํ•˜์— ๋”ฐ๋ฅธ ์ ์ ˆ์„ฑ ์—ฌ๋ถ€๋ฅผ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•ด ์—ฌ์„ฑ ๊ณ ํ˜ˆ์•• ํ™˜์ž์—์„œ ์ด๋ฅผ ๋ฐ˜์˜ํ•˜๋Š” ๋ถ€์ ์ ˆํ•œ ์ขŒ์‹ฌ์‹ค๋น„๋Œ€์™€ ์‹ฌํ˜ˆ๊ด€๊ณ„ ์งˆํ™˜ ๋ฐœ์ƒ์œ„ํ—˜ ๋ฐ ํ˜ˆ๊ด€์˜ ๊ฒฝ์ง๋„์™€์˜ ๊ด€๊ณ„๋ฅผ ์•Œ์•„๋ณด๊ณ ์ž ํ•˜์˜€๋‹ค. ๋ฐฉ๋ฒ•: 226๋ช…์˜ ๊ณ ํ˜ˆ์•• ์—ฌ์„ฑ ํ™˜์ž๋“ค์— ๋Œ€ํ•ด ์‹ฌ์žฅ์ดˆ์ŒํŒŒ, ๊ฒฝ๋™๋งฅ์ดˆ์ŒํŒŒ๋ฅผ ์‹œํ–‰ํ•˜์—ฌ ์ขŒ์‹ฌ์‹ค์งˆ๋Ÿ‰๊ณผ ๊ฒฝ๋™๋งฅ๋‚ด์ค‘๋ง‰ ๋‘๊ป˜, ฮฒ-stiffness๋ฅผ ์ธก์ •ํ•˜์˜€์œผ๋ฉฐ, ๋ถ€์ ์ ˆํ•œ ์ขŒ์‹ฌ์‹ค๋น„๋Œ€๋Š” ์„ฑ๋ณ„, ํ‚ค, stroke work๋ฅผ ํ†ตํ•ด ๊ณ„์‚ฐํ•œ ์ธก์ •์น˜ ๋Œ€ ์˜ˆ์ธก์น˜์˜ ์ขŒ์‹ฌ์‹ค์‹ฌ๊ทผ๋Ÿ‰ ๋น„์œจ์ด 128% ์ด์ƒ์ธ ๊ฒฝ์šฐ๋กœ ์ •์˜ํ•˜์˜€๋‹ค. Framingham risk score (FRS)๋Š” National Cholesterol Education Program Adult Treatment Panel III๋ฅผ ํ†ตํ•˜์—ฌ ๊ณ„์‚ฐ๋˜์—ˆ๋‹ค. ๊ฒฐ๊ณผ: ์ด 226๋ช… ์ค‘ 59๋ช…์ด ๋ถ€์ ์ ˆํ•œ ์ขŒ์‹ฌ์‹ค๋น„๋Œ€ ํ™˜์ž์˜€์œผ๋ฉฐ, ์ ์ ˆํ•œ ์ขŒ์‹ฌ์‹ค๋น„๋Œ€๊ตฐ๊ณผ ๋น„๊ตํ•˜์˜€์„ ๋•Œ ๋ถ€์ ์ ˆํ•œ ์ขŒ์‹ฌ์‹ค๋น„๋Œ€๊ตฐ์—์„œ ๋‚˜์ด๊ฐ€ ๋งŽ๊ณ  FRS๊ฐ€ ๋†’์œผ๋ฉฐ ๊ฒฝ๋™๋งฅ๋‚ด์ค‘๋ง‰ ๋‘๊ป˜๊ฐ€ ๋” ์ฆ๊ฐ€ํ•จ์„ ๋ณด์˜€๋‹ค. ํ•˜์ง€๋งŒ ๊ฒฝ๋™๋งฅ์˜ ํ™•์žฅ, ฮฒ-stiffness ๋ฐ arterial elastance์—๋Š” ์ฐจ์ด๊ฐ€ ์—†์—ˆ๋‹ค. ๋‘ ๊ทธ๋ฃน ๊ฐ„์— ์ขŒ์‹ฌ์‹ค๊ตฌํ˜ˆ๋ฅ ์€ ์ฐจ์ด๊ฐ€ ์—†์—ˆ์œผ๋‚˜, ์žฅ์ถ•๊ธฐ๋Šฅ์„ ๋ณด์—ฌ์ฃผ๋Š” s์€ ๋ถ€์ ์ ˆํ•œ ์ขŒ์‹ฌ์‹ค๋น„๋Œ€๊ตฐ์—์„œ ๋‚ฎ์•˜๋‹ค. ์ด์™„๊ธฐ๊ธฐ๋Šฅ์„ ๋‚˜ํƒ€๋‚ด๋Š” ์ง€ํ‘œ์ธ E/A ratio๋Š” ๋ถ€์ ์ ˆํ•œ ์ขŒ์‹ฌ์‹ค๋น„๋Œ€๊ตฐ์—์„œ ๋‚ฎ์•˜๊ณ , left atrial volume index๋Š” ๋†’์•˜๋‹ค. ๊ฒฐ๋ก : ๋ถ€์ ์ ˆํ•œ ์ขŒ์‹ฌ์‹ค๋น„๋Œ€๊ฐ€ ๋™๋ฐ˜๋œ ๊ณ ํ˜ˆ์•• ์—ฌ์„ฑ ํ™˜์ž๋“ค์€ ๋†’์€ FRS, ์ด์™„๊ธฐ๊ธฐ๋Šฅ์žฅ์• , ์ฆ๊ฐ€๋œ ๊ฒฝ๋™๋งฅ๋‚ด์ค‘๋ง‰ ๋‘๊ป˜๋ฅผ ๋ณด์—ฌ, ์ถ”ํ›„ ์‹ฌํ˜ˆ๊ด€๊ณ„ ์งˆํ™˜์˜ ๋ฐœ์ƒ์œ„ํ—˜์ด ๋†’์Œ์„ ๋ณด์˜€๋‹ค. ํ•˜์ง€๋งŒ ๊ฒฝ๋™๋งฅ์˜ ๊ธฐ๋Šฅ์„ฑ์ง€ํ‘œ์—๋Š” ์ฐจ์ด๊ฐ€ ์—†์—ˆ๋‹ค.์„œ๋ก  1 ๋ฐฉ๋ฒ• 3 ๊ฒฐ๊ณผ 7 ๊ณ ์ฐฐ 15 ์ฐธ๊ณ ๋ฌธํ—Œ 19Maste

    Streptomyces coelicolor ์—์„œ ๋‹ˆ์ผˆ์— ๋ฐ˜์‘ํ•˜๋Š” Nur์— ์˜ํ•œ ์Šˆํผ์˜ฅ์‚ฌ์ด๋“œ ๋””์Šค๋ฎคํƒ€์ œ ์œ ์ „์ž๋ฐœํ˜„์˜ ์กฐ์ ˆ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ƒ๋ช…๊ณผํ•™๋ถ€, 2014. 2. ๋…ธ์ •ํ˜œ.Nur (Nickel uptake regulator) is a nickel-responsive transcription factor the regulates nickel homeostasis and anti-oxidative response in S. coelicolor. Nur is a unique nickel-specific Fur-family regulator. In S. coelicolor, expression of the sodF and sodN genes is inversely regulated by Nur. Superoxide dismutases (SODs) are widely distributed enzymes that convert superoxides to hydrogen peroxide and molecular oxygen, using various metals as cofactors. Many actinobacteria contain genes for both Ni-containing (sodN) and Fe-containing (sodF) SODs. With sufficient nickel, Nur directly represses sodF transcription, while inducing sodN indirectly. Bioinformatic search revealed that a conserved 19 nt stretch upstream of sodN matches perfectly with the sodF downstream sequence. So we estimated that Nur could activates sodN gene through sodF transcripts, double repression mechanism. First we checked the existence of transcripts containing anti-sodN region by S1 mapping. We found that the sodF gene produced a stable small-sized RNA species (s-SodF) that harbors the anti-sodN sequence complementary to sodN mRNA from the 5 end up to the ribosome binding site and s-SodF is approximately ~90 nt confirmed by northern blotting. We could not detect any Nur box in nearby 5 end of s-SodF and s-SodF is sensitive to 5-monophosphate-specific exonuclease. These data strongly indicated that the s-SodF RNA is a likely processed product of sodF mRNA. In order to check the s-SodF effect on sodN expression, we introduced to โ–ณsodF mutant an overexpression plasmid for s-SodF RNA whose expression was driven by a strong ermE* promoter. In โ–ณsodF mutant, half-life of sodN is delayed to about 16min compared to WT (3min). But, in s-SodF overexpression strain, delayed half-life of sodN is restored to 7min. This result indicated that the s-SodF RNA caused a significant decrease in the half-life of the sodN mRNA. Therefore, Nur activates sodN expression through inhibiting the synthesis of sodF mRNA, from which inhibitory s-SodF RNA is generated. This reveals a novel mechanism by which antagonistic regulation of one gene is achieved by small RNA processed from the 3UTR of another genes mRNA. Recently, we reported crystal structure of Nur and Nur is homodimer and two DNA binding domains (DB-domain) are attached to the dimeric core constructed by two dimerization domains (D-domain). It contains a unique nickel-specific metal site (Ni-site) and nonspecific common metal site (M-site) per each monomer. Nur also has two Cys-Xโ€“X Cys motif but no zinc coordination is shown in crystal structure. Electrophoretic mobility shift assay (EMSA) using Nur overexpression cell extract by PET system in E. coli showed that Ni-site and M-site not Cys4 site are both important for DNA binding activity of Nur. This result coincide with Crystal structure of Nur. In order to confirm the critical residues of Nur in vivo, we introduced to โ–ณnur mutant an integration vector for pnur::nur variants expression and we checked the sodF repression activity of Nur by S1 mapping. We found that Ni-site was still important for Nur in vivo but mutations of M-site residues could not affect repression activity of Nur. Interestingly, Cys96S, Cys133S and Cys136 which consist of two Cys-Xโ€“X Cys motif were confirmed as critical residues of Nur. So we tried to do EMSA using S. coelicolor cell extract and result showed that Ni-site and two Cys-Xโ€“X Cys motif not M-site are both important for Nur in vivo. This result match with S1 mapping data. These experiment suggest the possibility that Nur coordinate zinc in two Cys-Xโ€“X Cys motif and this Cys4-Zn site will be critical structural metal binding site like BsuPerR in vivo.ABSTRACT i CONTENTS iii LIST OF FIGURES vii LIST OF TABLES x ABBREVIATIONS xi CHAPTER I. INTRODUCTION 1 I.1. Biology of Streptomyces coelicolor 2 I.2. Superoxide dismutase (SOD) system 3 I.2.1. Regulation of SOD system in bacteria 3 I.3. Bacterial Metalloregulators 4 I.3.1. Fur family regulators 6 I.3.2. Structural features of Fur family members 7 I.4. Role and regulation of Nickel 13 I.5. Nur in S. coelicolor 13 I.6. Small regulatory RNAs in bacteria 14 I.6.1. In Hfq-containg bacteria 17 I.6.2. In Actinobacteria with no Hfq homologs 18 I.7. RNA processing 19 CHAPTER II. MATERIALS AND METHODS 21 II.1. Strains and growth conditions 22 II.1.1. Streptomyces coelicolor 22 II.1.2. Escherichia coli 22 II.2. DNA manipulations 23 II.3. Polymerase Chain Reaction (PCR) 23 II.4. Construction of sodF transcript overproducing strain 23 II.5. RNA analysis 25 II.5.1. S1 mapping and northern analyses 25 II.5.2. 5' RACE 26 II.5.3. Exonuclease digestion of RNA 27 II.6. Overproduction of S. coelicolor Nur variants from E. coli 27 II.7. Complementation and expression of S. coelicolor Nur variants in vivo 28 II.8. Electrophoretic mobility shift assay (EMSA) 30 II.9. Western blotting 30 CHAPTER III. RESULTS 32 III.1. Inverse Regulation of Fe-SOD and Ni-SOD by Nur 33 III.1.1. Presence of complementarity between the sense strands of sodF and sodN genes 33 III.1.2. Verification of transcripts existence encompassing the anti-sodN sequence 37 III.1.3. Sequence and structure information of s-SodF 40 III.1.3.1. The 5 and 3 boundaries of s-SodF RNA 40 III.1.3.2. Secondary structure of s-SodF 45 III.1.4. s-SodF producing mechanism 45 III.1.4.1. Confirmation of another promoter of s-SodF 45 III.1.4.2. The 5 phosphorylation status of s-SodF 46 III.1.4.3. Test for possible RNases related to processing s-SodF 49 III.1.5. Function of s-SodF in vivo 49 III.1.5.1. sodN mRNA half life in sodF and sodF2 mutants 49 III.1.5.2. s-SodF RNA decreases the stability of sodN mRNA 51 III.1.6. Mutations in the anti-sodN region of s-SodF inactivate its inhibitory function 55 III.1.7. Growth phase-dependent antagonistic expression of sodN and sodF 58 III.1.7.1. sod genes expression in various growth phase 58 III.1.7.2. half life of sodN mRNA in various growth phase 62 III.1.8. Nickel responsiveness of sod genes 67 III.1.8.1. Nickel sensitivity of sod mutants 67 III.1.8.2. Responsive level of sod transcription to nickel 67 III.2. Determination of critical residues for Nur activity 73 III.2.1. Prediction of metal coordination ligands of Nur 73 III.2.2. Crystal structure of Nur 79 III.2.3. Metal binding sites of Nur 80 III.2.3.1. Metal-site (M-site) 80 III.2.3.2. Ni-site 80 III.2.3.3. Possible Zinc binding site (two Cys-X-X-Cys motif) 82 III.2.4.Verification of the various metal binding residues in Nur in vitro 83 III.2.4.1. Various Nur protein expression in E. coli 83 III.2.4.2. The binding activity of Nur variants in vitro 83 III.2.5.Verification of the various metal binding residues in Nur in vivo 84 III.2.5.1. Various Nur protein expression in S. coelicolor 84 III.2.5.2. The complementation effects of various Nur variant proteins in vivo 88 III.2.5.3. The binding activity of Nur variants in vivo 88 III.3. Overall prospect about Nur 90 CHAPTER IV. DISCUSSION 97 IV.1. General signification of s-SodF regulation 98 IV.1.1. Small regulatory RNA produced from a functional mRNA inhibits the expression of an antagonistically regulated gene 98 IV.1.2. Predicted occurrence of similar regulation 98 IV.1.3. Inverse regulation of isoenzymes and antagonistic proteins 105 IV.2. Prospects for Future Studies 106 References 107 ๊ตญ๋ฌธ์ดˆ๋ก 117 ๊ฐ์‚ฌ์˜ ๊ธ€ 120Docto

    Dickkopf-1 promotes angiogenesis by upregulating VEGF receptor 2-mediated mTOR/p70S6K signaling in hepatocellular carcinoma

    Get PDF
    The expression of Dickkopf-1 (DKK1), a negative regulator of the Wnt/ฮฒ-catenin signaling pathway, is upregulated in hepatocellular carcinoma (HCC). Here, we investigated the tumorigenic and angiogenic potential of DKK1 in HCC. Stable cell lines were established using the clustered regularly interspaced short palindromic repeats (CRISPR)-associated nuclease 9 (CRISPR/Cas9)-based DKK1 knock-out system in Hep3B cells and the tetracycline-based DKK1 inducible system in Huh7 cells. Multicellular tumor spheroids (MCTSs) were cultured using Hep3B stable cells. We also employed xenografts generated using Hep3B stable cells and transgenic mouse models established using hydrodynamic tail vein injection. The angiogenic potential increased in HUVECs treated with CM from Huh7 stable cells with high DKK1 expression and Hep3B wild-type cells. DKK1 accelerated the downstream molecules of vascular endothelial growth factor receptor 2 (VEGFR2)-mediated mTOR/p70 S6 kinase (p70S6K) signaling. MCTSs generated using Hep3B wild-type cells promoted compact spheroid formation and increased the expression of CD31 and epithelial-mesenchymal transition (EMT) markers, and increased the VEGFR2-mediated mTOR/p70S6K signaling, compared to the controls (all P<0.01). Xenograft tumors generated using Hep3B cells with DKK1 knock-out (n=10) exhibited slower growth than, the controls (n=10) and the expression of Ki-67, VEGFR2, CD31 and EMT markers decreased (all P<0.05). In addition, forced DKK1 expression with HRAS in transgenic mouse livers (n=5) resulted in the formation of more tumors and increased expression of downstream molecules of VEGFR2-mediated mTOR/p70S6K signaling pathway as well as Ki67, CD31 and EMT markers (P<0.05), compared to that of the controls (n=5). Our findings indicate that DKK1 facilitates angiogenesis and tumorigenesis by upregulating VEGFR2-mediated mTOR/p70S6K signaling in HCC.ope

    Different Glucose Uptake and Glycolytic Mechanisms Between Hepatocellular Carcinoma and Intrahepatic Mass-Forming Cholangiocarcinoma with Increased 18F-FDG Uptake

    Get PDF
    (18)F-FDG uptake in malignant tumors largely depends on the presence of facilitated glucose transporters, especially type 1 (Glut 1) and a rate-limiting glycolytic enzyme, hexokinase (HK) type II. Low expression of Glut 1 was reported in hepatocellular carcinoma (HCC), whereas high expression was found in cholangiocarcinoma. Immunohistochemistry and proteome analysis were performed to obtain a detailed evaluation of the mechanisms involved in glucose uptake and use in these tumors. METHODS: Tumor tissues obtained from both HCC (n = 7) and mass-forming cholangiocarcinoma patients (n = 7) who showed increased (18)F-FDG uptake on PET were used. Immunohistochemistry for Glut 1 and HK I-III was performed in all tumor tissues. To identify proteins that regulate carbohydrate metabolism, a proteome analysis with matrix-assisted laser desorption ionization-time of flight and enzymatic digestion in-gel were performed using 8 available tumor samples and 3 normal liver tissues. Of the 8 tumor samples, 4 were HCCs; one was an intermediate phenotype HCC, and 3 were cholangiocarcinomas. The spot intensity of the proteins was calculated using proteome data; the tissues then were divided into 2 groups on the basis of the protein expression pattern, because the protein expression pattern of the intermediate-phenotype HCC was close to that of the cholangiocarcinomas. Group A included the HCCs and group B included the intermediate-phenotype HCC as well as the cholangiocarcinomas. RESULTS: Immunoreactivity for Glut 1 was positive in all cholangiocarcinomas, but was negative in all HCCs except the one intermediate phenotype. However, HK II was positive in HCCs but was negative in 6 of the 7 cholangiocarcinomas. A total of 331 protein spots with a P value of <0.05 were identified by proteome analysis. Thirteen of these proteins that regulate carbohydrate metabolism were selected. The pentose phosphate pathway was increased in both groups, but more significantly in group B. Gluconeogenesis enzymes were decreased in both groups, but the tricarboxylic acid cycle-regulating enzyme expression was variable. CONCLUSION: HCCs have different glucose-regulating mechanisms from those of cholangiocarcinomas, even though both tumors showed increased (18)F-FDG uptake on PET scans. Further studies are required with regard to energy metabolism and (18)F-FDG uptake patterns in association with various oncogenic alterations regulating multiple steps of the glycolytic pathways.ope

    Toll-like receptor 3 mediates interleukin-6 production in human brain astrocytes after stimulation with

    Full text link
    ์˜๊ณผํ•™๊ณผ/๋ฐ•์‚ฌ[ํ•œ๊ธ€] ์„ ์ฒœ๋ฉด์—ญ๋ฐ˜์‘์€ ๋ณ‘์›๊ท  ์นจ์ž… ์‹œ pattern recognition receptor (PRR)์„ ํ†ตํ•˜์—ฌ pathogen-associated molecular patterns (PAMPs)๋ฅผ ์ธ์ง€ํ•จ์œผ๋กœ์จ ๊ฐ์—ผ์›์— ๋Œ€ํ•œ ์ผ์ฐจ ๋ฐ˜์‘์„ ๋‹ด๋‹นํ•œ๋‹ค. Toll-like receptor (TLR)๋Š” ํฌ์œ ๋ฅ˜์—์„œ ์„ ์ฒœ๋ฉด์—ญ๋ฐ˜์‘์— ๊ด€์—ฌํ•˜๋Š” PRR๋กœ ๋‹ค์–‘ํ•œ PAMP์„ ์ธ์ง€ํ•˜์—ฌ ์„ ์ฒœ๋ฉด์—ญ๋ฐ˜์‘์„ ์กฐ์ ˆํ•˜๋Š”๋ฐ ํ•ต์‹ฌ์ ์ธ ์—ญํ• ์„ ํ•œ๋‹ค. ์ตœ๊ทผ ์ค‘์ถ”์‹ ๊ฒฝ๊ณ„์—์„œ ์„ ์ฒœ๋ฉด์—ญ๋ฐ˜์‘์ด ์ผ์–ด๋‚œ๋‹ค๋Š” ์ฆ๊ฑฐ๊ฐ€ ์ œ์‹œ๋˜์–ด ๋ฉด์—ญ๋ฐ˜์‘์ด ํ‡ดํ–‰์„ฑ ์‹ ๊ฒฝ ์งˆํ™˜์˜ ๋ณ‘๋ฆฌ๊ธฐ์ „์œผ๋กœ ์ƒ๊ฐ๋œ๋‹ค. ์„ฑ์ƒ์„ธํฌ๋Š” ์ค‘์ถ”์‹ ๊ฒฝ๊ณ„๋ฅผ ๊ตฌ์„ฑํ•˜๋Š” ์‹ ๊ฒฝ๊ต์„ธํฌ๋กœ์„œ ์ค‘์ถ”์‹ ๊ฒฝ๊ณ„์˜ ๋ฌผ๋ฆฌ์ ์ธ ์ง€์ง€๋ฅผ ๋‹ด๋‹นํ•˜๊ณ  ์ค‘์ถ”์‹ ๊ฒฝ์กฐ์ง์˜ ํ™”ํ•™์  ํ•ญ์ƒ์„ฑ ์œ ์ง€์— ๊ด€์—ฌ ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ƒ๋ฆฌ์  ์ž‘์šฉ ์™ธ์—๋„ ๋ฉด์—ญํ•™์ ์ธ ๊ธฐ๋Šฅ์„ ํ•˜๊ณ  ์žˆ์–ด ์ค‘์ถ”์‹ ๊ฒฝ๊ณ„ ๋ฉด์—ญ๋ฐ˜์‘์— ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๊ณ  ํ‡ดํ–‰์„ฑ ์‹ ๊ฒฝ ์งˆํ™˜์˜ ๋ณ‘์ธ๊ณผ ๊นŠ์€ ๊ด€๋ จ์ด ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ์ƒ๊ฐ๋œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์‚ฌ๋žŒ ๋‡Œ ์„ฑ์ƒ์„ธํฌ์—์„œ TLR3๊ฐ€ ๋ฐœํ˜„ํ•จ์„ ํ™•์ธํ•˜๊ณ  double stranded RNA (dsRNA)๋กœ ์ž๊ทนํ•˜์—ฌ TLR3๋ฅผ ํ†ตํ•œ ์„ฑ์ƒ์„ธํฌ์˜ ํ™œ์„ฑํ™”๋ฅผ ๊ด€์ฐฐํ•˜์˜€๋‹ค. ์‚ฌ๋žŒ ๋‡Œ ์„ฑ์ƒ์„ธํฌ์—์„œ TLR3๊ฐ€ ๋ฐœํ˜„๋˜์—ˆ๊ณ  TLR3์˜ ๋ฆฌ๊ฐ„๋“œ์ธ dsRNA์™€ lipopolysaccharide (LPS)์™€ interferon (IFN)-g ์ž๊ทน์— ์˜ํ•ด TLR3์˜ ๋ฐœํ˜„์ด ์ฆ๊ฐ€ํ•˜์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ  dsRNA ์ž๊ทน์— ์˜ํ•ด TLR3๋ฅผ ํ†ตํ•œ ์‹ ํ˜ธ์ „๋‹ฌ ๊ฒฐ๊ณผ๋กœ ์‚ฌ๋žŒ ๋‡Œ ์„ฑ์ƒ์„ธํฌ์—์„œ NF-kB๊ฐ€ ํ™œ์„ฑํ™”๋˜์—ˆ๋‹ค. ๋˜ํ•œ dsRNA ์ฒ˜๋ฆฌ ์‹œ ์‚ฌ๋žŒ ๋‡Œ ์„ฑ์ƒ์„ธํฌ์—์„œ interleukin (IL)-6๊ฐ€ ์ƒ์„ฑ๋˜์—ˆ๊ณ , ์ด๋Š” TLR3 ์ฐจ๋‹จ ํ•ญ์ฒด์— ์˜ํ•ด 80% ์ด์ƒ ๊ฐ์†Œํ•˜์˜€๋‹ค. ์‚ฌ๋žŒ ๋‡Œ ์„ฑ์ƒ์„ธํฌ์—์„œ TLR3์˜ ํ™œ์„ฑํ™”์— ์˜ํ•ด mitogen-acitivated protein kinase (MAPK)๊ฐ€ ์ธ์‚ฐํ™” ๋˜์—ˆ๋‹ค. Jun-N-terminal kinase (JNK)์™€ p38 MAPK์˜ ์ธ์‚ฐํ™”๊ฐ€ ๊ฐ•ํ•˜๊ฒŒ ์ผ์–ด๋‚ฌ๊ณ  ๊ทธ์— ๋น„ํ•ด extracellular signal-regulated kinase (ERK)์˜ ์ธ์‚ฐํ™”๋Š” ์ ๊ฒŒ ์ผ์–ด๋‚ฌ๋‹ค. ์‚ฌ๋žŒ ๋‡Œ ์„ฑ์ƒ์„ธํฌ์— JNK ์–ต์ œ์ œ์ธ, JNK inhibitor II์™€ p38 MAPK ์–ต์ œ์ œ์ธ, SB203580๋ฅผ ์ „์ฒ˜์น˜ํ•˜๊ณ  dsRNA ์ž๊ทน์„ ์ฃผ์—ˆ์„ ๋•Œ IL-6์˜ ์ƒ์„ฑ์ด 80% ์ •๋„ ์–ต์ œ๋˜์—ˆ์œผ๋‚˜ ERK์˜ ์–ต์ œ์ œ์ธ U0126์— ์˜ํ•ด์„  50% ๊ฐ€๋Ÿ‰ ์–ต์ œ๋˜์—ˆ๋‹ค. ๊ฒฐ๋ก ์ ์œผ๋กœ ์„ฑ์ƒ์„ธํฌ๋Š” TLR3๋ฅผ ํ†ตํ•ด dsRNA ์ž๊ทน์— ์˜ํ•ด ํ™œ์„ฑํ™”๋˜๊ณ  MAP kinase ์‹ ํ˜ธ์ „๋‹ฌ ๊ฒฝ๋กœ๋ฅผ ๊ฑฐ์ณ IL-6๋ฅผ ์ƒ์„ฑํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ๊ฒฐ๊ณผ๋ฅผ ํ† ๋Œ€๋กœ ์„ฑ์ƒ์„ธํฌ๊ฐ€ ์ค‘์ถ”์‹ ๊ฒฝ๊ณ„์—์„œ ์„ ์ฒœ๋ฉด์—ญ๋ฐ˜์‘์„ ์œ ๋„ํ•˜๊ณ  ๋ฉด์—ญ๋ฐ˜์‘์„ ์กฐ์ ˆํ•˜์—ฌ ๊ฐ์—ผ์— ์˜ํ•ด ๋ฐœ์ƒ๋˜๋Š” ํ‡ดํ–‰์„ฑ ์‹ ๊ฒฝ ์งˆํ™˜ (neurodegenerative disease)์˜ ์ดˆ๊ธฐ ๋‹จ๊ณ„์™€ ์ง„ํ–‰์— ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•  ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ์Œ์„ ์ œ์‹œํ•œ๋‹ค. [์˜๋ฌธ]The innate immune system detects the presence of infection by recognizing pathogen-associated molecular patterns (PAMPs) which is recognized by pattern recognition receptors (PRRs). The toll-like receptor (TLR) family, one of the conserved PRRs in mammalian, constitutes a first line of defense against a variety of pathogens and play a critical role in initiating the innate immune response. Recently, there are many reports that the central nervous system (CNS) has well-organized innate immune reaction. The recent discovery of innate immune response in the brain, supports the idea that immune response may play a significant role in the pathogenesis of neurodegenerative disorder. Astrocytes represent the major population of CNS cells. Their main function is the physical protective support for neurons. However, the recent reports suggest that they contribute to inflammatory immune responses within the brain in response to microbial challenges. In this study, we investigate the TLR3 expression and the immunological function of TLR3 in human astrocytes. TLR3 was detected in human brain astrocytes and the expression level of TLR3 was increased by the stimuli of LPS, IFN-g and dsRNA. The activation of TLR3 with dsRNA, which is the TLR3 ligand, leaded to the activation of NF-kB and the production of the proinflammatory cytokine, interleukin (IL)-6. MAPK phosphorylation was increased by TLR3 activation in human fetal astrocytes. The activation of JNK and p38 MAPK was induced strongly by dsRNA treatment, however, the ERK phosphorylation was induced modestly. Preincubation of 2-AP (PKR inhibitor), JNK inhibitor II (JNK inhibitor), and SB203580 (p38 MAPK inhibitor) reduced the IL-6 expression by at least 80% in dsRNA-stimulated astrocytes. U0126 (ERK inhibitor) also inhibited IL-6 production to the 50% level in compared to that of dsRNA-stimulated astrocytes. In conclusion, TLR3 which is expressed in human brain astrocytes recognizes dsRNA and the activation of TLR3 induces IL-6 production through PKR and MAP kinases signalling pathway. These results suggest astrocytes can induce innate immune response in CNS and may play an important role in the pathogenesis of neurogenerative disorder.restrictio

    ๊ณ ๋ ค ์ธ์‚ผ ์„ญ์ทจ์— ๋”ฐ๋ฅธ ๋žซ๋“œ ๊ฐ„์„ธํฌ ์•”ํ™” ๊ณผ์ •์˜ ์–ต์ œ ํšจ๊ณผ

    Full text link
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์‹ํ’ˆ์˜์–‘ํ•™๊ณผ,2006.Maste

    ์ž์—ฐ์„ ์†Œ์žฌ๋กœ ํ•œ ์ˆญ๊ณ ์˜ ํ‘œํ˜„์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Full text link
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์„œ์–‘ํ™”๊ณผ(ํŒํ™”์ „๊ณต), 2013. 2. ์œค๋™์ฒœ.์ž์—ฐ์€ ์‚ฌ๋žŒ์˜ ํž˜์„ ๋„˜์–ด์„œ๋Š” ๊ฑฐ๋Œ€ํ•œ ํž˜์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ํž˜์€ ์‚ฌ๋žŒ์˜ ์˜ํ–ฅ๋ ฅ์ด ๋”ํ•ด์ง€์ง€ ์•Š๊ณ ๋„ ์Šค์Šค๋กœ ์กด์žฌํ•˜๋Š” ์ž์—ฐ๋ฌผ๊ณผ ์ž์—ฐ ํ˜„์ƒ๋“ค์—์„œ ๋ณผ ์ˆ˜ ์žˆ๋‹ค. ์ด๋“ค์ด ๋‚˜์˜ ๊ฐ์ •์„ ์ž๊ทนํ•  ๋•Œ ๊ทธ ํž˜์„ ๋” ์ง์ ‘์ ์œผ๋กœ ๋Š๋‚„ ์ˆ˜ ์žˆ๋‹ค. ๋‚˜์˜ ์ž‘์—…์€ ์ด๋Ÿฌํ•œ ํž˜์— ์˜ํ•ด ๋ฐœ์ƒํ•˜๋Š” ๊ฐ์ •๊ณผ ๋‚ด๋ฉด์˜ ๋ณ€ํ™”๋ฅผ ์ฃผ๋ชฉํ•˜๊ณ , ์ด๋ฅผ ์ด๋ฏธ์ง€๋กœ ํ˜•์ƒํ™”ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ๊ฐ์ •์€ ๋ณตํ•ฉ์ ์ด๊ณ  ๋ชจํ˜ธํ•˜์—ฌ ๋ช…ํ™•ํžˆ ํ•˜๊ธฐ ํž˜๋“ค์ง€๋งŒ ์ž์—ฐ ์†์—์„œ ๋‹ค์ธต์˜ ๊ฐ์ •์„ ๋Š๋ผ๊ณ , ๊ณ ์–‘๋œ ์ •์‹ ์  ์ฒดํ—˜์„ ์˜๋ฏธํ•˜๋Š” ์ˆญ๊ณ ๋กœ ์„ค๋ช…ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋‚˜์˜ ์ž‘์—…์€ ๋‚ด๊ฐ€ ๋Š๋‚€ ๊ณตํฌ, ์™ธ๊ฒฝ, ์—ด๋ง ๋“ฑ์˜ ๋‚ด์  ๊ฒฝํ—˜์ด ์ด๋Ÿฌํ•œ ์ˆญ๊ณ ์˜ ํ•œ ๋ถ€๋ถ„์— ์†ํ•œ๋‹ค๋Š” ์ƒ๊ฐ์„ ๋ฐ”ํƒ•์œผ๋กœ ํ•œ๋‹ค. ์ฃฝ์Œ์—์˜ ๊ณตํฌ์™€ ๊ณ ๋…, ๊ฒฝ์™ธ๊ฐ์€ ์ˆญ๊ณ ์— ์†ํ•˜๋Š” ๊ฐ์ •๋“ค ์ค‘ ๋‚ด๊ฐ€ ํŠนํžˆ ์ฃผ๋ชฉํ•˜์—ฌ ํ‘œํ˜„ํ•˜๋Š” ๊ฐ์ •๋“ค์ด๋‹ค. ์ด๋Ÿฌํ•œ ๊ฐ์ •๋“ค์€ ํŠน์ •ํ•œ ์ž์—ฐ์˜ ๋Œ€์ƒ๋“ค๊ณผ ๊ด€๊ณ„๋ฅผ ๊ฐ€์ง€๊ณ  ๋ฐœ์ƒํ•œ๋‹ค. ์ด๋“ค์ด ๋‚ด์žฌํ•˜๊ณ  ์žˆ๋Š” ์„ฑ๊ฒฉ, ์ด๋ฅผํ…Œ๋ฉด ์–ด๋‘ , ์ ๋ง‰, ์‹ ๋น„ํ•จ ๋“ฑ์€ ๋‚˜์—๊ฒŒ ๊ฐ๊ฐ์˜ ๊ฐ์ •์„ ๋ถˆ๋Ÿฌ์ผ์œผํ‚ค๋Š” ์ฃผ์š” ๋™๊ธฐ๊ฐ€ ๋œ๋‹ค. ์ด๋ ‡๊ฒŒ ๋‚ด์ ์œผ๋กœ ๊ฐ•๋ ฌํ•œ ์ฒดํ—˜์„ ํ•˜๊ฒŒ ํ•˜๋Š” ์ž์—ฐ์˜ ์ผ๋ฉด์€ ๋‚˜์—๊ฒŒ ๋ถˆ๊ฐ€ํ•ญ๋ ฅ์ ์ธ ํž˜์œผ๋กœ ์ž‘์šฉํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ํž˜์ด ๋‚ดํฌ๋œ ๊ฐ์ •์„ ๋งˆ์ฃผํ•˜๊ณ  ์ฒดํ—˜ํ•˜๋Š” ๊ฒƒ์€ ๋‚ด๋ฉด์„ ๊นŠ์ˆ™์ด ํƒ๊ตฌํ•˜๋Š” ๊ธฐํšŒ๊ฐ€ ๋œ๋‹ค. ์ž์—ฐ ๋Œ€์ƒ๋“ค์— ๊ฐ์ •์„ ์ด์ž…ํ•˜๋Š” ๊ฒƒ์€ ๋Œ€์ƒ์— ๋Œ€ํ•œ ์ดํ•ด๋ฅผ ํ†ตํ•ด ๊ฐ์ •์˜ ์›์ธ์„ ํŒŒ์•…ํ•˜๊ณ  ๋‚ด๋ฉด์— ๋ชฐ์ž…ํ•˜์—ฌ ์ด๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ์ „๋‹ฌํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•˜๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค. ์•ž์„œ ๋ฐํ˜”๋“ฏ์ด ์ž์—ฐ๋ฌผ์€ ๊ฐ์ • ์œ ๋ฐœ์˜ ๋™๊ธฐ๊ฐ€ ๋œ๋‹ค. ์ด๋Š” ๋Œ€์ƒ์„ ์ง€๊ฐํ•  ๋•Œ ๊ฒฝํ—˜ํ•˜๋Š” ๊ฐ๊ฐ ์ •๋ณด๋“ค์ด ๋‚ด๋ฉด์˜ ๋ณ€ํ™”์— ์˜ํ–ฅ์„ ์ฃผ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๋‚˜๋Š” ๋ชจ๋“  ๊ฐ๊ฐ๊ธฐ๊ด€์„ ์—ด์–ด ์ž์—ฐ์„ ์ ๊ทน์ ์œผ๋กœ ์ง€๊ฐํ•จ์œผ๋กœ์จ ๊ฐ์ •์— ๋ชฐ์ž…ํ•˜๊ณ ์ž ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ณผ์ •์„ ๊ฑฐ์ณ ํ‘œํ˜„๋œ ์ž์—ฐ๋ฌผ์—๋Š” ๋‚˜์˜ ์‹ฌ๋ฆฌ๊ฐ€ ๋ฐ˜์˜๋˜์–ด ์žˆ๋‹ค. ๋˜ํ•œ ์ธ์ฒด์™€ ์ž์—ฐ์˜ ํ˜•์ƒ์„ ๊ฒฐํ•ฉํ•˜์—ฌ ํ‘œํ˜„ํ•จ์œผ๋กœ์จ ๊ฐ์ •์„ ๋ณด๋‹ค ์ง์ ‘์ ์œผ๋กœ ์ฒดํ—˜ํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•˜์˜€๋‹ค. ๋ชธ์€ ์™ธ๋ถ€๋กœ๋ถ€ํ„ฐ ์ „๋‹ฌ๋œ ๊ฐ๊ฐ๊ณผ ๋‚ด๋ถ€, ์ •์‹ ์„ ์ž‡๋Š” ๋งค๊ฐœ์ฒด์ด๋‹ค. ์™ธ๋ถ€์˜ ์ž๊ทน์€ ๋ชธ์„ ๊ฑฐ์ณ ๋‚ด๋ถ€์— ์˜ํ–ฅ์„ ์ค€๋‹ค. ๋•Œ๋ฌธ์— ๋Œ€์ƒ๊ณผ ๋™ํ™”๋˜์–ด ์ž์—ฐํ™”(่‡ช็„ถๅŒ–)๋œ ๋ชธ์— ์˜ํ•ด ์ „๋‹ฌ๋œ ์ด‰๊ฐ์  ๊ฐ๊ฐ์€ ๊ฐ์ •์˜ ๊ฐ•๋„์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋ฉด์„œ ๊ณต๊ฐ๋„ ๋˜ํ•œ ๋†’์ธ๋‹ค. ์ด์™€ ๊ฐ™์ด ๊ฐ์ •์„ ๊ฐ•ํ•˜๊ฒŒ ์ „๋‹ฌํ•˜๊ธฐ ํ•˜๊ณ ์ž ํ•˜๋Š” ์˜๋„๋Š” ์ฃผ์ œ๋ฅผ ์‹œ๊ฐํ™”ํ•˜๋Š” ๊ณผ์ •์—์„œ๋„ ๋“œ๋Ÿฌ๋‚œ๋‹ค. ๋‚˜๋Š” ์ฃผ๋กœ ๋‹จ์ผํ•œ ํ˜•์ƒ๊ณผ ๋ฐฐ๊ฒฝ์œผ๋กœ ์ด๋ฃจ์–ด์ง„ ๋‹จ์ˆœํ•œ ๊ตฌ๋„๋ฅผ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ ์ฃผ์ œ๊ฐ€ ๋˜๋Š” ํ˜•์ƒ์„ ๊ฐ•์กฐํ•œ๋‹ค. ๋ฐฐ๊ฒฝ์˜ ์—ฌ๋ฐฑ์€ ํ˜•์ƒ๊ณผ ๋Œ€๋น„๋˜์–ด ์ด๋ฏธ์ง€๋ฅผ ๋‹๋ณด์ด๊ฒŒ ํ•œ๋‹ค. ๋˜ํ•œ ํ™”๋ฉด ์ „๋ฐ˜์— ๊ฐ•์กฐ๋œ ์ง„ํ•˜๊ณ  ๋ฐ€๋„ ์žˆ๋Š” ์ƒ‰์€ ์–ด๋‘ ์ด ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ํž˜์„ ์ฃผ๋„ํ•˜๋Š” ์—ญํ• ์„ ํ•œ๋‹ค. ํŠนํžˆ ํ•œ ์ด๋ฏธ์ง€๋ฅผ ์—ฌ๋Ÿฌ ๋ฒˆ ๊ฒน์ณ ์ฐ๋Š” ํŒํ™”๊ธฐ๋ฒ•(Double-Drop)์„ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ ์–ด๋‘ ์˜ ๊นŠ์ด์™€ ๋ฏธ๋ฌ˜ํ•œ ์ƒ‰์˜ ์ฐจ์ด๋ฅผ ๋“œ๋Ÿฌ๋‚ผ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ ํ™”๋ฉด์„ ํฌ๊ฒŒ ํ‚ค์›€์œผ๋กœ์จ ์ž์—ฐ์˜ ํž˜์—์„œ ๋Š๊ปด์ง€๋Š” ์••๋„๊ฐ์„ ์ง์ ‘์ ์œผ๋กœ ๋Š๋‚„ ์ˆ˜ ์žˆ๊ฒŒ ํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์ด๋Š” ํž˜์„ ํ‘œํ˜„ํ•˜๊ณ ์ž ํ•˜๋Š” ๋ฐฉ๋ฒ•์˜ ์ผํ™˜์œผ๋กœ ์ข…์ด์˜ ๋ฌผ์„ฑ์„ ๊ฐ•์กฐํ•˜์—ฌ ํ™”๋ฉด์˜ ํ‘œ๋ฉด์„ ๊ฑฐ์น ๊ฒŒ ํ•˜๋Š” ํ‘œํ˜„๊ณผ ๋ชฉ์ ์„ ๊ฐ™์ด ํ•œ๋‹ค. ํŠนํžˆ ์ƒˆ๊ธฐ๊ณ  ์ฐ๋Š” ์˜ค๋ชฉํŒ๋ฒ•์˜ ๊ณผ์ •์€ ๋งค์ฒด๋งŒ์ด ๊ฐ–๋Š” ๋ฌผ๋ฆฌ์ ์ธ ํž˜์ด ๊ฐ•์กฐ๋œ๋‹ค. ๋”์šฑ์ด ํŒ์— ๊ฐ€ํ•ด์ง„ ํ™ˆ์˜ ๊นŠ์ด์™€ ํ”„๋ ˆ์Šค๋กœ ์ฐํ˜€ ๋“œ๋Ÿฌ๋‚œ ๋ฌด๊ฒŒ๊ฐ์€ ๋ฌผ์งˆ์ ์ธ ์ธก๋ฉด์ด ๊ฐ•์กฐ๋˜๋ฉด์„œ ๊ฐ์ •์„ ๋” ๊ฐ•ํ•˜๊ฒŒ ์ „๋‹ฌํ•˜๋Š” ์—ญํ• ์„ ํ•œ๋‹ค.๋ชฉ ์ฐจ โ… . ์„œ๋ก  1 โ…ก. ์ž์—ฐ๊ณผ ์ˆญ๊ณ  5 1. ์ˆญ๊ณ ์˜ ๊ฐœ๋… 5 2. ์ˆญ๊ณ ์˜ ํ‘œํ˜„ 7 โ…ข. ๋ถˆ๊ฐ€ํ•ญ๋ ฅ์  ํž˜ 12 1. ์ฃฝ์Œ์˜ ๊ณตํฌ 13 2. ๊ณ ๋…์˜ ์ •์„œ 17 3. ๊ฒฝ์™ธ๊ฐ 24 โ…ฃ. ๊ฐ์ •์˜ ์ด์ž… 28 1. ์ง€๊ฐ๊ณผ ๊ฐ์ •์˜ ๊ฒฐํ•ฉ 28 2. ๊ฐ์ •๊ณผ ๋™ํ™”๋œ ์‹ ์ฒด 33 โ…ค. ํž˜์˜ ๊ทน๋Œ€ํ™” 38 1. ๋Œ€์ƒ ์ค‘์‹ฌ ๊ตฌ๋„ 38 2. ์–ด๋‘ ์˜ ์ƒ‰ 41 3. ํž˜์˜ ํ‘œํ˜„ 46 โ…ฅ. ๊ฒฐ๋ก  56 ๊ทธ๋ฆผ๋ชฉ๋ก 59 ์ฐธ๊ณ ๋ฌธํ—Œ 61 Abstract 63Maste

    Effects of RecQL4 on chromatin structure changes in DNA double strand break site

    Full text link
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์‚ฌ๋ฒ”๋Œ€ํ•™ ๊ณผํ•™๊ต์œก๊ณผ(์ƒ๋ฌผ์ „๊ณต), 2022. 8. ์ด์ค€๊ทœ.DNA ์†์ƒ ์ค‘ ๊ฐ€์žฅ ์‹ฌ๊ฐํ•œ ํ˜•ํƒœ์ธ DNA ์ด์ค‘ ๊ฐ€๋‹ฅ ์†์ƒ(DNA double-strand breaks, DSBs)์€ ์œ ์ „์ฒด ์•ˆ์ •์„ฑ์— ์ง์ ‘์ ์œผ๋กœ ์˜ํ–ฅ์„ ๋ฏธ์น˜๊ธฐ ๋•Œ๋ฌธ์— ๋ฐ˜๋“œ์‹œ ์ˆ˜์„ ๋˜์–ด์•ผ ํ•œ๋‹ค. RecQL4๋Š” DSBs์˜ ์ฃผ์š” ์ˆ˜์„  ๊ธฐ์ž‘์ธ ๋น„์ƒ๋™๋ง๋‹จ๊ฒฐํ•ฉ(Non-Homologous End Joining)๊ณผ ์ƒ๋™ ์žฌ์กฐํ•ฉ(Homologous Recombination)์— ๋ชจ๋‘ ๊ด€์—ฌํ•œ๋‹ค๊ณ  ์•Œ๋ ค์ ธ ์žˆ์ง€๋งŒ, DSBs ๋ฐœ์ƒ ์ดˆ๊ธฐ ์ˆ˜ ์ดˆ ๋‚ด์— Poly(ADP-Ribose) Polymerase 1(PARP 1) ์˜์กด์ ์œผ๋กœ DSBs ๋ถ€์œ„์— ๊ฒฐํ•ฉํ•œ ํ›„ ์ˆ˜ ๋ถ„ ๋‚ด์— ํ•ด๋ฆฌ๋  ๋™์•ˆ DSBs ๋ถ€์œ„์— ๊ฒฐํ•ฉํ•˜์—ฌ ์ •ํ™•ํžˆ ์–ด๋–ค ์—ญํ• ์„ ์ˆ˜ํ–‰ํ•˜๋Š”์ง€๋Š” ์•„์ง ๋ฐํ˜€์ง„ ๋ฐ”๊ฐ€ ์—†๋‹ค. ์ด์— ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” RecQL4๊ฐ€ DSBs ๋ถ€์œ„์˜ ์—ผ์ƒ‰์งˆ ๊ตฌ์กฐ ๋ณ€ํ™”์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ํ™•์ธํ•˜๊ณ ์ž DSBs ๋ถ€์œ„๋กœ ๋ชจ์ง‘๋˜๋Š” RecQL4์˜ ์ตœ์†Œ ์˜์—ญ์ธ ์•„๋ฏธ๋…ธ์‚ฐ 360-437 ์˜์—ญ๊ณผ GST๊ฐ€ ์œตํ•ฉ๋œ ๋‹จ๋ฐฑ์งˆ์„ ๋ฐœํ˜„์‹œ์ผœ ์ •์ œํ•˜์˜€๋‹ค. ์ด๋ฅผ in vitro์—์„œ ๋ฐ”์ด์˜คํ‹ด(biotin)์ด ๊ฒฐํ•ฉ ๋˜์–ด ์žˆ๋Š” Poly(ADP-Ribose)(PAR)์™€ ๋ฐ˜์‘์‹œ์ผœ GST๋กœ ์นจ์ „์‹œํ‚ค๋Š” ์‹คํ—˜๊ณผ ์ŠคํŠธ๋ ™ํƒ€๋น„๋”˜(Streptavidin)์œผ๋กœ ์นจ์ „์‹œํ‚ค๋Š” ์‹คํ—˜์„ ๊ฐ๊ฐ ์‹ค์‹œํ•˜์˜€๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ RecQL4์˜ ์•„๋ฏธ๋…ธ์‚ฐ 360-437 ์˜์—ญ์ด PAR binding motif๋กœ ์ž‘์šฉํ•˜์—ฌ ์ง์ ‘์ ์œผ๋กœ PAR์™€ ๊ฒฐํ•ฉํ•œ๋‹ค๋Š” ์‚ฌ์‹ค์„ ๋ฐํž˜์œผ๋กœ์จ RecQL4๊ฐ€ PARylation๋œ ์—ผ์ƒ‰์งˆ๊ณผ ์ง์ ‘์ ์œผ๋กœ ์ƒํ˜ธ์ž‘์šฉํ•˜์—ฌ ์—ผ์ƒ‰์งˆ์˜ ๊ตฌ์กฐ ๋ณ€ํ™”๋ฅผ ์œ ๋ฐœ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ๋‹จ๋ฐฑ์งˆ์ž„์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋˜ํ•œ RecQL4๊ฐ€ DSBs ๋ถ€์œ„์—์„œ ํžˆ์Šคํ†ค ๋‹จ๋ฐฑ์งˆ ์ œ๊ฑฐ์— ๊ด€์—ฌํ•˜๋Š”์ง€ ์•Œ์•„๋ณด๊ณ ์ž RecQL4์˜ ๋ฐœํ˜„์„ ์–ต์ œํ•œ DIvA ์„ธํฌ์™€ ๊ทธ๋ ‡์ง€ ์•Š์€ ์„ธํฌ์— 4-hydroxytamoxifen(4-OHT)์„ ์ฒ˜๋ฆฌํ•ด DSBs๋ฅผ ์œ ๋ฐœํ•œ ํ›„ Chromatin Immunoprecipitation(ChIP) - quantitative PCR(qPCR)์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ RecQL4์˜ ๋ฐœํ˜„์ด ์–ต์ œ๋œ ์„ธํฌ์—์„œ๋Š” DSBs ๋ถ€์œ„์—์„œ ํžˆ์Šคํ†ค ๋‹จ๋ฐฑ์งˆ์ด ์ œ๊ฑฐ๋˜์ง€ ์•Š์•˜๊ณ , RecQL4์˜ ๋ฐœํ˜„์ด ์ •์ƒ์ ์œผ๋กœ ์ด๋ฃจ์–ด์ง„ ์„ธํฌ์—์„œ๋งŒ ํžˆ์Šคํ†ค ๋‹จ๋ฐฑ์งˆ์ด ์ œ๊ฑฐ๋˜์—ˆ๋‹ค. ๋‚˜์•„๊ฐ€ DSBs ๋ถ€์œ„์˜ PARylation๋œ ํžˆ์Šคํ†ค ๋‹จ๋ฐฑ์งˆ์„ ์ธ์‹ํ•˜์—ฌ ์ด๋ฅผ ์ œ๊ฑฐํ•˜๋Š”๋ฐ ๊ด€์—ฌํ•œ๋‹ค๊ณ  ์•Œ๋ ค์ง„ FAcilitates Chromatin Transcription(FACT) ๋ณตํ•ฉ์ฒด๊ฐ€ DSBs ๋ถ€์œ„๋กœ ๋ชจ์ง‘๋˜๋Š”๋ฐ RecQL4๊ฐ€ ์–ด๋–ค ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”์ง€๋ฅผ ํ™•์ธํ•˜์˜€๋‹ค. RecQL4์˜ ๋ฐœํ˜„์„ ์–ต์ œํ•œ U2OS ์„ธํฌ์™€ ๊ทธ๋ ‡์ง€ ์•Š์€ ์„ธํฌ์— FACT์˜ ์†Œ๋‹จ์œ„์ฒด์ธ SSRP1์— EGFP๋ฅผ ์œตํ•ฉํ•ด ๋ฐœํ˜„์‹œํ‚จ ํ›„ ๋ ˆ์ด์ € ๋ฏธ์„ธ์กฐ์‚ฌ๋ฅผ ํ†ตํ•ด DSBs๋ฅผ ๋ฐœ์ƒ์‹œ์ผœ DSBs ๋ถ€์œ„๋กœ ๋ชจ์ง‘๋˜๋Š” SSRP1์˜ ์–‘์ƒ์„ ๊ด€์ฐฐํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ ๊ฒฐ๊ณผ RecQL4์˜ ๋ฐœํ˜„์ด ์–ต์ œ๋˜๋ฉด SSRP1์˜ DSBs ๋ถ€์œ„๋กœ ๋ชจ์ง‘๋˜๋Š” ์ •๋„๊ฐ€ ํ˜„์ €ํžˆ ๊ฐ์†Œ๋˜์—ˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด RecQL4๊ฐ€ DSBs ๋ถ€์œ„์—์„œ ํžˆ์Šคํ†ค ๋‹จ๋ฐฑ์งˆ ์ œ๊ฑฐ์— ๊ด€์—ฌํ•˜๋ฉฐ, FACT์˜ DSBs ๋ถ€์œ„ ๊ฒฐํ•ฉ์—๋„ ๊ด€์—ฌํ•œ๋‹ค๋Š” ์‚ฌ์‹ค์„ ๋ฐํ˜€๋‚ด์—ˆ๋‹ค.DNA double-strand breaks(DSBs), the most serious form of DNA damage, must be repaired because it directly affects genetic stability. RecQL4 is known to be involved in both non-homologous end joining(NHEJ) and homologous recombination(HR), the major repair mechanisms of DSBs, but it is not yet known what role it plays in the DSB site during dissociation within minutes after Poly(ADP-Ribose) Polymerase 1(PARP 1) dependent binding to DSB within seconds of occurrence. In this study, in order to confirm the effect of RecQL4 on the chromatin structure change of the DSBs site, GST fused with the amino acid 360-437 region, which is the minimum region of RecQL4 recruited to the DSBs site, were expressed and purified. In vitro, these proteins were incubated with biotin-labeled Poly(ADP-Ribose)(PAR) and pulled down with GST and Streptavidin, respectively. Experiments show that the amino acid 360-437 region of RecQL4 acts as a PAR binding motif and binds directly to PAR, confirming that RecQL4 is a protein that can interact directly with PARylated chromatin and cause structural changes in chromatin. In addition, to find out whether RecQL4 was involved in the removal of histone proteins from the DSBs site, 4-hydroxytamoxifen(4-OHT) was treated in DIvA cells that inhibited the expression of RecQL4 and cells that did not, causing DSBs, and then Chromatin Immunoprecipitation(ChIP) - quantitative PCR(qPCR) was used. As a result, histone proteins were not removed from the DSBs site in cells where RecQL4 expression was suppressed, and histone proteins were removed only from cells where RecQL4 was normally expressed. Moreovre, I examined how RecQL4 affects recruitment of FAcilitates Chromatin Transcription(FACT) complex known to be involved in recognizing and removing PARylated histone proteins in the DSBs site. EGFP fused with SSRP1, a subunit of FACT, was expressed in U2OS cells that inhibited the expression of RecQL4 and cells that did not. To generate DSBs, laser micro-irradiation was used and the pattern of SSRP1 recruited to the DSBs site was observed. This result shows that when the expression of RecQL4 was suppressed, the degree of recruitment to the DSBs site of SSRP1 was significantly reduced. Taken together, these results reveal that RecQL4 is involved in the removal of histone proteins from the DSBs site and also in the binding of the DSBs site of FACT.์ œ 1 ์žฅ ์„œ๋ก  1 ์ œ 1 ์ ˆ ์ด๋ก ์  ๋ฐฐ๊ฒฝ 1 ์ œ 2 ์ ˆ ์—ฐ๊ตฌ์˜ ํ•„์š”์„ฑ ๋ฐ ๋ชฉ์  6 ์ œ 2 ์žฅ ์žฌ๋ฃŒ ๋ฐ ์—ฐ๊ตฌ ๋ฐฉ๋ฒ• 8 ์ œ 1 ์ ˆ ์„ธํฌ ๋ฐฐ์–‘ ๋ฐ DSBs ์œ ๋ฐœ 8 ์ œ 2 ์ ˆ GST ์œตํ•ฉ ๋‹จ๋ฐฑ์งˆ์˜ ๋ฐœํ˜„๊ณผ ์ •์ œ 8 ์ œ 3 ์ ˆ PAR ๊ฒฐํ•ฉ ์‹คํ—˜ 1(GST pull down) 9 ์ œ 4 ์ ˆ PAR ๊ฒฐํ•ฉ ์‹คํ—˜ 2(Streptavidin pull down) 10 ์ œ 5 ์ ˆ ์›จ์Šคํ„ด ๋ธ”๋กฏ(Western blot) 10 ์ œ 6 ์ ˆ siRNA ๋ฐ ํ”Œ๋ผ์Šค๋ฏธ๋“œ ํ˜•์งˆ์ฃผ์ž… 11 ์ œ 7 ์ ˆ ๋ฉด์—ญ ํ˜•๊ด‘ ์—ผ์ƒ‰๋ฒ•(Immunofluorescence staining) 12 ์ œ 8 ์ ˆ ๋ ˆ์ด์ € ๋ฏธ์„ธ ์กฐ์‚ฌ(Laser micro-irradiation) 12 ์ œ 9 ์ ˆ ChIP(Chromatin Immunoprecipitation) - qPCR(quantitative PCR) 13 ์ œ 10 ์ ˆ ํ•ญ์ฒด ๋ฐ ์–ต์ œ์ œ(Antibody and Inhibitor) 17 ์ œ 3 ์žฅ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ 19 ์ œ 1 ์ ˆ RecQL4์˜ ์•„๋ฏธ๋…ธ์‚ฐ 360-437 ์˜์—ญ๊ณผ PAR์˜ ์ƒํ˜ธ์ž‘์šฉ ์—ฌ๋ถ€ ํƒ์ƒ‰ 19 ์ œ 2 ์ ˆ 4-OHT์— ์˜ํ•ด ์œ ๋„๋˜๋Š” DSBs ์œ„์น˜ ์„ ์ • ๋ฐ qPCR์„ ์œ„ํ•œ ํ”„๋ผ์ด๋จธ ์ œ์ž‘ 22 ์ œ 3 ์ ˆ 4-OHT์— ์˜ํ•ด ์œ ๋„๋˜๋Š” DSBs ํ™•์ธ ๋ฐ ChIP ์กฐ๊ฑด ํƒ์ƒ‰ 28 ์ œ 4 ์ ˆ DSBs ๋ถ€์œ„์˜ ํžˆ์Šคํ†ค ๋‹จ๋ฐฑ์งˆ ์ œ๊ฑฐ ๊ณผ์ •์—์„œ RecQL4์˜ ์—ญํ•  ํƒ์ƒ‰ 32 ์ œ 5 ์ ˆ FACT์˜ DNA ์†์ƒ ๋ถ€์œ„ ๊ฒฐํ•ฉ์— RecQL4๊ฐ€ ๋ฏธ์น˜๋Š” ์˜ํ–ฅ ํƒ์ƒ‰ 34 ์ œ 4 ์žฅ ๋…ผ์˜ 39 ์ฐธ๊ณ ๋ฌธํ—Œ 42 Abstract 51์„

    Factors associated with service utilization patterns among foreign spouses of multicultural families in Korea

    Full text link
    Korea is becoming a multicultural society where families formed via international marriages are growing on a steady rate. Many changes have taken place both at policy and practice levels since mid 2000's with services being developed and implemented for these families. Despite such progress, utilization rates for certain services remain low among foreign spouses and literature investigating their service use remains scarce. This study is an attempt to fill the void in the literature by identifying factors associated with foreign spouses' service utilization patterns. More specifically, this study examines contributing factors of use of adjustment assistance and family services using Gelberg-Andersen's Behavioral Model for Vulnerable Populations as a theoretical framework. In addition, this study also explores the differences in associated factors by foreign spouses' gender and country of origin. This study uses the National Survey on Multicultural Families 2009 for analyses. A total of 6,316 foreign spouses, both female and male are included for analyses. Structural equation modeling is employed to examine the relationships among predisposing, enabling, need factors and utilization of two services. Multiple group analyses are also conducted to identify group differences in paths leading to service use. Findings show that different factors are associated with utilization of two domains of services. For adjustment assistance services, gender, country of origin, length of residence, and having children are significantly associated with service use, and foreign spouses' National Basic Livelihood Security recipient status, place of residence, and having relationship with people from home country and with other foreigners are identified as important enabling factors affecting their service use. Perceived need for services and language ability are also important need factors determining their adjustment assistance service use that those with stronger needs and higher language proficiency level are more likely to utilize the services. For family service use, however, only a handful number of factors are identified as predictors. Among predisposing factors, gender, country of origin, and status of having children are significantly associated with family service use. National Basic Livelihood Security recipient status, place or residence, and relationship with people from home country are significant enabling factors and spouses' perceived need for services is the strongest determinant of use of this particular domain of services. Multiple group analyses also revealed that factors affecting utilization of adjustment assistance and family services differed by spouses' gender and country of origin. This study carries several important implications First, this study is the first known study to apply the Gelberg-Andersen model in studying the service utilization behavior of foreign spouses in Korea, providing an empirical evidence on applicability of the model. Second, it is the first study exploring the topic using large, national data gaining generalizatibility of the findings. Third, this study provides new insight into understanding service use patterns of foreign spouses as determinants of utilization have been identified. Findings provide an empirical ground for interventions as well as implications for policy and practice. For example, findings show that language ability functions as a barrier in accessing the adjustment assistance, implying that services are not properly reaching the target population. Those who are not equipped with some knowledge of language are not likely to use the services, indicating that level-specific services need to be implemented. More active outreach effort is also needed as those in most need are not being serviced. Findings also indicate that relationships with people from home country function as a bridge between the service and the spouses. It is thus recommended for social workers and practitioners to target such informal social network in disseminating information about the services. Findings from multiple group analyses also reveal that different factors are associated with service use between male and female, Korean-Chinese and non Korean-Chinese groups. Such finding indicates that more gender and ethnic-specific services need to be in place. In sum, findings show that one size fits all approach towards service provision for multicultural families is not effective and changes need to be made at the structural level to improve an overall accessibility of services. keywords : The Gelberg-Andersen Behavioral Model for Vulnerable Populations, Adjustment Assistance Services, Family Services, Multicultural Families, Structural Equation Modeling, Multiple Group Analyses Student Number : 2006-30057๋‹ค๋ฌธํ™”์‚ฌํšŒ๋กœ์˜ ์ „ํ™˜์ ์— ์„œ ์žˆ๋Š” ํ•œ๊ตญ ์‚ฌํšŒ๋Š” 2000๋…„๋Œ€ ์ค‘๋ฐ˜์„ ๊ธฐ์ ์œผ๋กœ ํ•œ๊ตญ์ธ๊ณผ ์™ธ๊ตญ์ธ์˜ ๊ฒฐํ˜ผ์„ ํ†ตํ•ด ํ˜•์„ฑ๋œ ๋‹ค๋ฌธํ™”๊ฐ€์ •์„ ์œ„ํ•œ ์ œ๋ฐ˜์˜ ๋…ธ๋ ฅ์„ ๊พ€ํ•˜์—ฌ์™”๋‹ค. ๋‹ค๋ฌธํ™”๊ฐ€์ • ์ง€์›์„ ์œ„ํ•œ ์ •์ฑ…์ด ๋ชจ์–‘์„ ๊ฐ–์ถ”๊ธฐ ์‹œ์ž‘ํ•˜์˜€๊ณ  ํŠนํžˆ ์™ธ๊ตญ์ธ ๋ฐฐ์šฐ์ž๋“ค์˜ ์ ์‘์„ ์œ„ํ•œ ๋‹ค์–‘ํ•œ ์„œ๋น„์Šค๊ฐ€ ๊ฐœ๋ฐœ๋˜์—ˆ๋‹ค. ํ˜„์žฌ ๋‹ค๋ฌธํ™”๊ฐ€์ •์ง€์›์„ผํ„ฐ์™€ ๊ฐ™์€ ๊ธฐ๊ด€์—์„œ ์ด๋“ค์„ ์œ„ํ•œ ์„œ๋น„์Šค ์ œ๊ณต์ด ํ™œ๋ฐœํžˆ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ์ง€๋งŒ ์„œ๋น„์Šค ์ด์šฉ๋ฅ ์€ ๋†’์ง€ ์•Š์œผ๋ฉฐ, ์„œ๋น„์Šค ์ด์šฉ ํ–‰์œ„์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋Š” ๋งค์šฐ ๋ฏธ๋น„ํ•˜์—ฌ ์ด์— ๋Œ€ํ•œ ์ดํ•ด๊ฐ€ ์ „๋ฐ˜์ ์œผ๋กœ ๋งค์šฐ ๋ถ€์กฑํ•œ ์‹ค์ •์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ๊ตญ๋‚ด์— ๊ฑฐ์ฃผํ•˜๋Š” ๋‹ค๋ฌธํ™”๊ฐ€์ • ๋‚ด ์™ธ๊ตญ์ธ ๋ฐฐ์šฐ์ž๋“ค์˜ ์„œ๋น„์Šค ์ด์šฉ ํŒจํ„ด์„ ํŒŒ์•…ํ•˜๊ณ , ์ด๋“ค์˜ ์„œ๋น„์Šค ์ด์šฉํ–‰์œ„์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์š”์ธ์„ ๊ทœ๋ช…ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉ์ ์œผ๋กœ ํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ ์™ธ๊ตญ์ธ ๋ฐฐ์šฐ์ž๋“ค์—๊ฒŒ ์ œ๊ณต๋˜๋Š” ์„œ๋น„์Šค๋ฅผ ์ ์‘์ง€์›์„œ๋น„์Šค์™€ ๊ฐ€์กฑ์„œ๋น„์Šค๋กœ ๊ตฌ๋ถ„ํ•˜์—ฌ ๊ฐ ์„œ๋น„์Šค ์ด์šฉ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์š”์ธ์„ Gelberg-Andersen์˜ ์ทจ์•ฝ๊ณ„์ธต์„ ์œ„ํ•œ ์„œ๋น„์Šค์ด์šฉ ํ–‰์œ„๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ ์‚ดํŽด๋ณด์•˜๋‹ค. ๋˜ํ•œ ์ด๋Ÿฌํ•œ ์˜ํ–ฅ์š”์ธ์ด ์™ธ๊ตญ์ธ ๋ฐฐ์šฐ์ž๋“ค์˜ ์„ฑ๋ณ„๊ณผ ์ถœ์‹ ๊ตญ๊ฐ€์— ๋”ฐ๋ผ ์ฐจ์ด๊ฐ€ ์žˆ๋Š”์ง€ ํƒ์ƒ‰ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” 2009๋…„ ๋‹ค๋ฌธํ™”๊ฐ€์กฑ์‹คํƒœ์กฐ์‚ฌ ์ž๋ฃŒ ์ค‘ 6,316๋ช…์˜ ์™ธ๊ตญ์ธ๋ฐฐ์šฐ์ž๋ฅผ ๋ถ„์„๋Œ€์ƒ์œผ๋กœ ์‚ผ์•˜์œผ๋ฉฐ, ๊ตฌ์กฐ๋ฐฉ์ •์‹๋ชจํ˜•์„ ์ด์šฉํ•˜์˜€๋‹ค. ๋ถ„์„๊ฒฐ๊ณผ, ์„œ๋น„์Šค ์ข…๋ฅ˜์— ๋”ฐ๋ผ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์š”์ธ์ด ๋‹ค๋ฅธ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ ์‘์ง€์›์„œ๋น„์Šค์˜ ๊ฒฝ์šฐ ์™ธ๊ตญ์ธ ๋ฐฐ์šฐ์ž๋“ค์˜ ์„ฑ๋ณ„, ์ถœ์‹ ๊ตญ๊ฐ€, ๊ฑฐ์ฃผ๊ธฐ๊ฐ„, ์ž๋…€์œ ๋ฌด๊ฐ€ ์œ ์˜ํ•œ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์„ ํ–‰์š”์ธ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๊ฐ€๋Šฅ์š”์ธ ์ค‘์—์„œ๋Š” ๊ตญ๋ฏผ๊ธฐ์ดˆ์ƒํ™œ๋ณด์žฅ์ œ๋„ ์ˆ˜๊ธ‰ ์—ฌ๋ถ€, ๊ฑฐ์ฃผ์ง€์—ญ, ๋ชจ๊ตญ์ธ๊ณผ ํ•œ๊ตญ ์‚ฌ๋žŒ์ด ์•„๋‹Œ ๋‹ค๋ฅธ ์™ธ๊ตญ์ธ๋“ค๊ณผ์˜ ๊ด€๊ณ„๊ฐ€ ์œ ์˜ํ•œ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์–ธ์–ด์ˆ˜์ค€๊ณผ ์ง€๊ฐ๋œ ์š•๊ตฌ์ˆ˜์ค€ ์—ญ์‹œ ์ ์‘์ง€์›์„œ๋น„์Šค ์ด์šฉ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์ฃผ์š” ์˜ˆ์ธก๋ณ€์ธ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ฆ‰, ์™ธ๊ตญ์ธ ๋ฐฐ์šฐ์ž๊ฐ€ ์—ฌ์„ฑ์ผ์ˆ˜๋ก, ์กฐ์„ ์กฑ์ด ์•„๋‹ˆ๋ฉฐ ํ•œ๊ตญ ๋‚ด ๊ฑฐ์ฃผ๊ธฐ๊ฐ„์ด ์งง์„์ˆ˜๋ก, ์ž๋…€๊ฐ€ ์žˆ๊ณ  ๊ธฐ์ดˆ๋ณด์žฅ ์ˆ˜๊ธ‰์ž์ด๋ฉฐ ๋†์ดŒ์— ๊ฑฐ์ฃผํ• ์ˆ˜๋ก, ๋ชจ๊ตญ์ธ ๋ฐ ๋‹ค๋ฅธ ์™ธ๊ตญ์ธ๋“ค๊ณผ์˜ ๊ด€๊ณ„๊ฐ€ ๋งŽ์„์ˆ˜๋ก, ๋˜ํ•œ ํ•œ๊ตญ์–ด ์ˆ˜์ค€์ด ๋†’๊ณ  ์ง€๊ฐ๋œ ์š•๊ตฌ์ˆ˜์ค€์ด ๋†’์„์ˆ˜๋ก ์ ์‘์ง€์›์„œ๋น„์Šค ์ด์šฉ์ด ๋†’์•˜๋‹ค. ๊ฐ€์กฑ์„œ๋น„์Šค์˜ ๊ฒฝ์šฐ ๋ฐฐ์šฐ์ž๋“ค์˜ ์„ฑ๋ณ„, ์ถœ์‹ ๊ตญ๊ฐ€, ์ž๋…€์œ ๋ฌด๊ฐ€ ์ค‘์š”ํ•œ ์„ ํ–‰์š”์ธ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๊ณ  ๊ธฐ์ดˆ๋ณด์žฅ ์ˆ˜๊ธ‰ ์—ฌ๋ถ€, ๊ฑฐ์ฃผ ์ง€์—ญ, ๊ทธ๋ฆฌ๊ณ  ๋ชจ๊ตญ์ธ๋“ค๊ณผ์˜ ๊ด€๊ณ„๊ฐ€ ์ค‘์š”ํ•œ ๊ฐ€๋Šฅ์š”์ธ์œผ๋กœ ํŒŒ์•…๋˜์—ˆ์œผ๋ฉฐ, ์ง€๊ฐ๋œ ์„œ๋น„์Šค ์š•๊ตฌ์ˆ˜์ค€์ด ๊ฐ€์žฅ ํฐ ์˜ํ–ฅ์š”์ธ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ๋ฐฐ์šฐ์ž๊ฐ€ ์—ฌ์„ฑ์ผ์ˆ˜๋ก, ์กฐ์„ ์กฑ์ด ์•„๋‹์ˆ˜๋ก, ์ž๋…€๊ฐ€ ์žˆ๊ณ  ์ˆ˜๊ธ‰๋Œ€์ƒ์ž์ด๋ฉฐ ๋†์ดŒ์— ๊ฑฐ์ฃผํ• ์ˆ˜๋ก, ๋˜ํ•œ ๋ชจ๊ตญ์ธ๋“ค๊ณผ์˜ ๊ด€๊ณ„๊ฐ€ ๋งŽ๊ณ  ์ง€๊ฐ๋œ ์„œ๋น„์Šค ์š•๊ตฌ์ˆ˜์ค€์ด ๋†’์„์ˆ˜๋ก ๊ฐ€์กฑ์„œ๋น„์Šค ์ด์šฉ์ด ๋†’์•˜๋‹ค. ๋‹ค์ค‘์ง‘๋‹จ๋ถ„์„ ๊ฒฐ๊ณผ, ๋ฐฐ์šฐ์ž๋“ค์˜ ์„ฑ๋ณ„๊ณผ ์ถœ์‹ ๊ตญ๊ฐ€์— ๋”ฐ๋ผ ์š”์ธ๋“ค์˜ ์˜ํ–ฅ์ด ๋‹ค๋ฅธ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์™ธ๊ตญ์ธ ๋‚จํŽธ์˜ ๊ฒฝ์šฐ ์ทจ์—…์—ฌ๋ถ€๊ฐ€ ์ด๋“ค์˜ ์ ์‘์ง€์› ๋ฐ ๊ฐ€์กฑ ์„œ๋น„์Šค ์ด์šฉ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์ฃผ์š” ์š”์ธ์œผ๋กœ ๋‚˜ํƒ€๋‚œ ๋ฐ˜๋ฉด, ์—ฌ์„ฑ์—๊ฒŒ ์ทจ์—…์—ฌ๋ถ€๋Š” ์œ ์˜ํ•œ ์˜ํ–ฅ์„ ๋ฏธ์น˜์ง€ ์•Š์•˜๋‹ค. ๋˜ํ•œ ์กฐ์„ ์กฑ ๋ฐฐ์šฐ์ž์ธ ๊ฒฝ์šฐ ์–ธ์–ด์‹ค๋ ฅ์ด ๋‚ฎ์„์ˆ˜๋ก ์„œ๋น„์Šค ์ด์šฉ์ด ๋งŽ์€ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ์œผ๋‚˜ ๋น„์กฐ์„ ์กฑ ๋ฐฐ์šฐ์ž๋“ค์€ ์–ธ์–ด์‹ค๋ ฅ์ด ๋†’์„์ˆ˜๋ก ์„œ๋น„์Šค ์ด์šฉ์ด ๋งŽ์€ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ๊ฒฐ๊ณผ๋Š” ๋‹จํŽธ์ ์ด๊ณ  ์ œํ•œ์  ์„œ๋น„์Šค ์ œ๊ณต์ด ์„œ๋น„์Šค ์ด์šฉ ๋Œ€์ƒ์„ ํŠน์ • ์ง‘๋‹จ์œผ๋กœ ์ œํ•œํ•˜๋Š” ํšจ๊ณผ๋ฅผ ๊ฐ–๊ฒŒ ๋˜๋ฏ€๋กœ ๋ณด๋‹ค ํฌ๊ด„์ ์ธ ์„œ๋น„์Šค๊ฐ€ ์ œ๊ณต๋  ํ•„์š”์„ฑ์ด ์žˆ์Œ์„ ์‹œ์‚ฌํ•œ๋‹ค. ๋˜ํ•œ ์™ธ๊ตญ์ธ ๋ฐฐ์šฐ์ž๋“ค์„ ๋™์งˆ์  ์ง‘๋‹จ์œผ๋กœ ํŒŒ์•…ํ•˜์—ฌ ์„œ๋น„์Šค๋ฅผ ์ œ๊ณตํ•˜๋Š” ๊ฒƒ์—๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ์œผ๋ฏ€๋กœ ์„ฑ๋ณ„๊ณผ ์ถœ์‹ ๊ตญ๊ฐ€, ๊ฑฐ์ฃผ ์ง€์—ญ ๋ฐ ์–ธ์–ด์ˆ˜์ค€์— ๋”ฐ๋ผ ์ฐจ๋ณ„ํ™”๋œ ์„œ๋น„์Šค ๊ฐœ๋ฐœ๊ณผ ์ œ๊ณต์ด ์ด๋ฃจ์–ด์งˆ ํ•„์š”๊ฐ€ ์žˆ์Œ์„ ์˜๋ฏธํ•œ๋‹ค. ํ˜„์žฌ๊นŒ์ง€ ๊ตญ๋‚ด์˜ ๋‹ค๋ฌธํ™”๊ฐ€์ • ์™ธ๊ตญ์ธ๋ฐฐ์šฐ์ž์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋Š” ๋Œ€๋ถ€๋ถ„ ๊ธฐ์ˆ ์  ์ˆ˜์ค€์— ๋จธ๋ฌผ๋Ÿฌ ์žˆ๊ณ  ์—ฌ์„ฑ์ด๋ฏผ์ž๋“ค์„ ์ค‘์‹ฌ์œผ๋กœ ์ด๋ฃจ์–ด์กŒ์œผ๋ฉฐ ๋Œ€๋ถ€๋ถ„ ์ ์€ ๊ทœ๋ชจ์˜ ํ‘œ๋ณธ์„ ๋Œ€์ƒ์œผ๋กœ ์ง„ํ–‰๋˜์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ๋‹ค๋ฌธํ™”๊ฐ€์ • ์™ธ๊ตญ์ธ ๋ฐฐ์šฐ์ž๋“ค์˜ ์„œ๋น„์Šค ์ด์šฉ ์—ฐ๊ตฌ์— ์žˆ์–ด ์ตœ์ดˆ๋กœ ์ „๊ตญ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜๊ณ  ๋‚จ์„ฑโ€ค์—ฌ์„ฑ ๋ฐฐ์šฐ์ž๋ฅผ ํฌํ•จ์‹œ์ผฐ๋‹ค๋Š” ์ ์—์„œ ์˜์˜๋ฅผ ๊ฐ€์ง„๋‹ค. ๋˜ํ•œ ์„œ๋น„์Šค ์ด์šฉ ํŒจํ„ด์— ๋Œ€ํ•œ ์ดˆ๊ธฐ ์—ฐ๊ตฌ๋กœ์„œ ๊ตญ๋‚ด ์ตœ์ดˆ๋กœ Gelberg-Andersen ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ ๊ทธ ์ ์šฉ๊ฐ€๋Šฅ์„ฑ์„ ํƒ์ƒ‰ํ•˜์˜€๋‹ค๋Š” ์ ์—์„œ ์˜์˜๊ฐ€ ์žˆ๋‹ค. ๋” ๋‚˜์•„๊ฐ€ ๋‹ค์ค‘์ง‘๋‹จ๋ถ„์„์„ ํ†ตํ•˜์—ฌ ์™ธ๊ตญ์ธ ๋ฐฐ์šฐ์ž๋“ค์ด ์ด์งˆ์ ์ธ ์ง‘๋‹จ์ด๋ฉฐ ์„ฑ๋ณ„ ๋ฐ ์ถœ์‹ ๊ตญ๊ฐ€์— ๋”ฐ๋ผ ์„œ๋น„์Šค ์ด์šฉ ํ˜•ํƒœ๊ฐ€ ๋‹ค๋ฅด๊ณ  ์ด์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์š”์ธ ์—ญ์‹œ ๋‹ค๋ฅด๋‹ค๋Š” ์ ์„ ๊ทœ๋ช…ํ•˜์˜€๋‹ค. ๊ทธ๋Ÿผ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ๋ณธ ์—ฐ๊ตฌ๋Š” ํšก๋‹จ์  ์—ฐ๊ตฌ๋กœ์„œ ์ธ๊ณผ ๊ด€๊ณ„ ์„ค๋ช…์— ์žˆ์–ด ๋ถ€์กฑํ•จ์ด ์žˆ์œผ๋ฉฐ, 2์ฐจ ๋ฐ์ดํ„ฐ ํ™œ์šฉ์œผ๋กœ ์ธํ•œ ๋ณ€์ˆ˜์˜ ์ œํ•œ ๋“ฑ ๋ฐฉ๋ฒ•๋ก ์  ํ•œ๊ณ„๋ฅผ ๊ฐ€์ง„๋‹ค. ์ฃผ์š”์–ด : ๋‹ค๋ฌธํ™”๊ฐ€์ •, Gelberg-Andersen์˜ ์ทจ์•ฝ๊ณ„์ธต์„ ์œ„ํ•œ ์„œ๋น„์Šค ์ด์šฉ ๋ชจ๋ธ, ์ ์‘์ง€์›์„œ๋น„์Šค, ๊ฐ€์กฑ์„œ๋น„์Šค, ๊ตฌ์กฐ๋ฐฉ์ •์‹, ๋‹ค์ค‘์ง‘๋‹จ๋ถ„์„ ํ•™ ๋ฒˆ : 2006-30057Docto
    corecore