24 research outputs found

    ์†์„ฑ ์ด์› ๋…ผ๋ณ€๊ณผ ํ˜„์ƒ์  ๊ฐœ๋…

    Get PDF
    ํ˜„์ƒ์  ์˜์‹(phenomenal consciousness)์˜ ๋ฌธ์ œ๋Š” ์‹ฌ์  ์ธ๊ณผ์™€ ํ•จ๊ป˜ ๋ฌผ๋ฆฌ์ฃผ์˜์  ์„ธ๊ณ„๊ด€์˜ ๋งˆ์ง€๋ง‰ ์žฅ์• ๋ฌผ๋กœ ์—ฌ๊ฒจ์ง€๊ณ  ์žˆ๋‹ค(Kim 2001). ํ˜„์ƒ์  ์˜์‹ ์ƒํƒœ์—๋Š” ์ง€๊ฐ์  ๊ฒฝํ—˜, ์‹ ์ฒด์  ๊ฐ๊ฐ, ์‹ฌ์  ์ด๋ฏธ์ง€, ์ •์„œ์  ๊ฒฝํ—˜ ๋“ฑ์ด ํฌํ•จ๋œ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ์šฐ๋ฆฌ๋Š” ๋ณด๊ณ  ๋“ฃ๊ณ  ๋งŒ์ง€๊ณ  ๋ƒ„์ƒˆ ๋งก๊ณ  ๋ง›๋ณด๊ฑฐ๋‚˜, ๊ณ ํ†ต์ด๋‚˜ ๊ฐ„์ง€๋Ÿฌ์›€์„ ๋Š๋‚„ ๋•Œ ๋ณด๋‹ค ์„ ๋ช…ํ•˜๊ฒŒ, ๋˜๋Š” ๊ธฐ์จ์ด๋‚˜ ์Šฌํ”” ๊ฐ™์€ ๊ฐ์ •์„ ๋Š๋ผ๊ฑฐ๋‚˜ ์ƒ์ƒ ์†์—์„œ ์ง€๊ฐ์  ์‹ฌ์ƒ์„ ๊ทธ๋ ค๋ณผ ๋•Œ ๋‹ค์†Œ ์•ฝํ•˜๊ฒŒ ํ˜„์ƒ์  ์˜์‹์„ ๊ฒฝํ—˜ํ•œ๋‹ค. ํ˜„์ƒ์  ์˜์‹์€ ์ผ์ธ์นญ์ , ์ฃผ๊ด€์  ๊ด€์ ์—์„œ ๋Š๋ผ๋Š” ๋‚  ๋Š๋‚Œ (raw fee), ๊ฐ๊ฐ์งˆ(qualia)์„ ๊ฐ€๋ฆฌํ‚ค๋ฉฐ, ์ธ์ง€์  ์˜์‹๊ณผ ๋‹ฌ๋ฆฌ ์ธ๊ณผ์ , ๊ธฐ๋Šฅ์ ์œผ๋กœ ํฌ์ฐฉ๋˜์ง€ ์•Š์œผ๋ฉด์„œ๋„ ๊ทธ ์กด์žฌ๋ฅผ ๋ถ€์ •ํ•˜๊ธฐ ์‰ฝ์ง€ ์•Š๋‹ค

    ๊ณผ๋ƒ‰ ์กฐ๊ฑด์— ๋”ฐ๋ฅธ ๋น„๋“ฑ ๊ธฐํฌ์˜ ๊ฑฐ๋™ ๋ฐ ์œ ๋™์žฅ ํŠน์„ฑ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„๊ณตํ•™๋ถ€, 2021.8. ๋ฐ•ํ˜•๋ฏผ.๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ณผ๋ƒ‰ ์กฐ๊ฑด์˜ ํ’€๋น„๋“ฑํ˜„์ƒ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ฆ๊ธฐ ๊ธฐํฌ์˜ ๊ฑฐ๋™๊ณผ ๊ทธ์— ๋”ฐ๋ฅธ ์ฃผ๋ณ€ ์•ก์ฒด์˜ ์œ ๋™์žฅ์„ ์‹คํ—˜์ ์œผ๋กœ ๋ถ„์„ํ•˜์˜€๋‹ค. ๊ธฐํฌ์˜ ์‹œ๊ฐ„์— ๋”ฐ๋ฅธ ๋ณ€ํ™” (์„ฑ์žฅ, ๋ถ„๋ฆฌ, ์ƒ์Šน, ๊ทธ๋ฆฌ๊ณ  ์†Œ๋ฉธ)๋Š” ๊ณผ๋ƒ‰ ์˜จ๋„์— ๋”ฐ๋ผ ๋‹ค๋ฅธ ํŠน์ง•์„ ๋ณด์ธ๋‹ค. ๊ณผ๋ƒ‰ ์กฐ๊ฑด์„ ๋ณ€์ˆ˜๋กœ ํ•˜์—ฌ, ๊ธฐํฌ ๊ตฌ์กฐ์˜ ๋ณ€ํ™”์™€ ์ฃผ์œ„์— ์œ ๋„๋˜๋Š” ์•ก์ฒด์˜ ์œ ๋™์žฅ์„ ์ดˆ๊ณ ์†์นด๋ฉ”๋ผ๋ฅผ ์ด์šฉํ•œ ์ด์ƒ-์ž…์ž์œ ๋™์˜์ƒ๊ณ„๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋™์‹œ์— ์ธก์ •ํ•˜์˜€๋‹ค. ๊ณผ๋ƒ‰ ์˜จ๋„๊ฐ€ ์ปค์งˆ์ˆ˜๋ก, ๊ธฐํฌ๊ฐ€ ์—ดํŒ์—์„œ ๋ถ„๋ฆฌ๋  ๋•Œ์˜ ํฌ๊ธฐ๊ฐ€ ๊ธฐํ•˜๊ธ‰์ˆ˜์ ์œผ๋กœ ์ž‘์•„์ง€๋ฉฐ, ๋ถ„๋ฆฌ๋˜๋Š” ์ˆœ๊ฐ„๊นŒ์ง€ ๊ฑธ๋ฆฌ๋Š” ์‹œ๊ฐ„ ๋˜ํ•œ ์œ ์‚ฌํ•œ ๊ฒฝํ–ฅ์„ฑ์„ ๋ณด์ธ๋‹ค. ๊ณผ๋ƒ‰ ์˜จ๋„๊ฐ€ ๋น„๊ต์  ๋‚ฎ์€ ์กฐ๊ฑด์—์„œ๋Š” ๊ธฐํฌ๊ฐ€ ์„ฑ์žฅํ•˜์—ฌ ๋ถ„๋ฆฌ๋˜๊ธฐ ์ง์ „๊นŒ์ง€ ์ง€์†์ ์œผ๋กœ ์„ฑ์žฅํ•˜๋Š” ๋ฐ˜๋ฉด, ๊ณผ๋ƒ‰ ์˜จ๋„๊ฐ€ ๋น„๊ต์  ํฐ ํ™˜๊ฒฝ์—์„œ๋Š” ๊ฐ€์—ด๋ฉด์—์„œ ๋ถ„๋ฆฌ๋˜๊ธฐ ์ „๋ถ€ํ„ฐ ๊ธฐํฌ๊ฐ€ ์‘์ถ• ์—ด์ „๋‹ฌ๋กœ ์ธํ•˜์—ฌ ํฌ๊ธฐ๊ฐ€ ์ค„์–ด๋“ค๊ธฐ ์‹œ์ž‘ํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ธฐํฌ ์„ฑ์žฅ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์—ด์ „๋‹ฌ ๋ฉ”์ปค๋‹ˆ์ฆ˜๋“ค์„ ๊ธฐ๋ฐ˜์œผ๋กœ, ๊ณผ๋ƒ‰ ์กฐ๊ฑด์—์„œ์˜ ํ’€๋น„๋“ฑ ๊ธฐํฌ ์„ฑ์žฅ ๋ชจ๋ธ์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ๊ณผ๋ƒ‰ ์˜จ๋„๊ฐ€ ๋‚ฎ์€ ์กฐ๊ฑด์—์„œ ์„ฑ์žฅํ•˜์—ฌ ๋ถ„๋ฆฌ๋œ ๊ธฐํฌ (2.5-3.1mm)๋Š” ์ˆ˜์ง์œผ๋กœ ์ƒ์Šนํ•˜๋ฉฐ ์ฒœ์ฒœํžˆ ์‘์ถ•ํ•˜๊ณ , ์œ ์ฒด ๊ด€์„ฑ๋ ฅ์˜ ์ง€๋ฐฐ์ ์ธ ์˜ํ–ฅ์œผ๋กœ ์ธํ•ด ํ‘œ๋ฉด ๊ตฌ์กฐ์˜ ๋ณ€ํ˜•์ด ๊ฐ•ํ•˜๊ฒŒ ๋ฐœ์ƒํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ํ‘œ๋ฉด ๊ตฌ์กฐ์˜ ๋ณ€ํ˜•์ด ๋ฐ˜๋ณต์ ์œผ๋กœ ๋‚˜ํƒ€๋‚˜๋ฉฐ, ๊ธฐํฌ์˜ ์ƒ์Šน ์†๋„์™€ ์ข…ํšก๋น„๊ฐ€ ๋“ฑ๋ฝ์„ ๊ฑฐ๋“ญํ•œ๋‹ค. ๋ฐ˜๋ฉด, ๊ณผ๋ƒ‰ ์˜จ๋„๊ฐ€ ๋†’์€ ์กฐ๊ฑด์—์„œ๋Š” ๊ธฐํฌ (1.5-2.2mm)๊ฐ€ ๋ฒฝ๋ฉด์—์„œ ๋ถ„๋ฆฌ๋œ ์ดํ›„์— ๋งค์šฐ ๋น ๋ฅด๊ฒŒ ์‘์ถ•ํ•˜์—ฌ ์†Œ๋ฉธํ•œ๋‹ค. ์ด๋•Œ, ๊ธฐํฌ๋Š” ๋ถ„๋ฆฌ ์ดํ›„์— ์ง€์†์ ์œผ๋กœ ๊ฐ€์†๋˜๋ฉฐ, ์™„์ „ํžˆ ์‘์ถ•ํ•˜์—ฌ ์†Œ๋ฉธํ•˜๊ธฐ ์ง์ „์— ํ‘œ๋ฉด ๊ตฌ์กฐ๊ฐ€ ๊ฐ€์žฅ ๋‚ฉ์ž‘ํ•ด์ง€๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์ธ๋‹ค. ์ƒ์Šนํ•˜๋Š” ๊ธฐํฌ ์ฃผ์œ„๋กœ ๋ฐœ๋‹ฌํ•˜๋Š” ์™€๋ฅ˜ ๊ตฌ์กฐ ๋˜ํ•œ ๊ณผ๋ƒ‰ ์˜จ๋„๊ฐ€ ๋‚ฎ์€ ์กฐ๊ฑด์—์„œ ๋” ๊ฐ•ํ•˜๊ฒŒ ๋ฐœ๋‹ฌํ•˜๋ฉฐ, ๊ฐ€์—ด๋ฉด์œผ๋กœ๋ถ€ํ„ฐ ๋” ๋ฉ€๋ฆฌ ์ „๋‹ฌ๋จ์„ ๋ฐœ๊ฒฌํ•˜์˜€๋‹ค.In the present study, we experimentally analyze the evolution of vapor bubble dynamics and subsequent bubble-induced flow, produced in a subcooled nucleate pool boiling condition. The development of vapor bubble (growth, departure, rise and collapse) is highly dependent on the subcooled temperature. Varying the subcooled condition, the temporal variation of bubble structure and corresponding flow field of surrounding liquid are measured simultaneously using the high-speed two-phase particle image velocimetry. With growing subcooled temperature, bubble departure diameter and bubble growth time tend to exponentially decrease. In a less subcooled condition, the bubble continuously grows until departure, while the bubble begins to shrink (condensate) before departing from the wall, in a highly subcooled condition. Based on the heat transfer mechanisms influencing the bubble growth, we develop the bubble growth model available in the subcooled pool boiling condition. The departing bubble in a less subcooled condition (2.5-3.1mm in size) vertically rises with a significant shape deformation influenced by the governing effect of liquid inertial force, and shrinks slowly (low condensation rate). In a highly subcooled condition, however, the smaller bubble (1.5-2.2mm) is detached from the wall, and rapidly dissipates by means of high condensation rate. The rising velocity and aspect ratio of the bubble in the less subcooled condition fluctuate following the deformation of bubble structure. The departing bubble in a highly subcooled liquid is gradually accelerated and flattened until the complete dissipation. Counter-rotating vortical structure induced around a rising bubble is produced stronger in a less subcooled liquid, and convected further from the wall than the cases of the highly subcooled liquid.Chapter 1. Introduction 1 Chapter 2. Experimental set-up and procedure 6 2.1. Subcooled nucleate pool boiling 6 2.2. High-speed two-phase particle image velocitmetry 7 Chapter 3. Results and discussion 12 3.1. Lifetime of a subcooled boiling bubble 12 3.2. Bubble growth model for a subcooled pool boiling 17 3.3. Liquid flow induced by the evolving vapor bubble 28 Chapter 4. Conclusion 52 Bibliography 54 ๊ตญ๋ฌธ ์ดˆ๋ก 61์„

    ์†์„ฑ ์ด์› ๋…ผ๋ณ€๊ณผ ํ˜„์ƒ์  ๊ฐœ๋…

    Get PDF
    Thesis(master`s)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ฒ ํ•™๊ณผ ์„œ์–‘์ฒ ํ•™์ „๊ณต,2004.Maste

    Effect of the dietary ionic balance on productivity, profitability and the incidence of milk fever in holstein dairy cattle

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๋™๋ฌผ์ž์›๊ณผํ•™์ „๊ณต,1997.Docto

    ๊ธฐ์—…์†Œ์œ ๊ตฌ์กฐ๊ฐ€ ์—ฐ๊ตฌ๊ฐœ๋ฐœ(R&D) ํˆฌ์ž์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) --์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ฒฝ์˜ํ•™๊ณผ (๊ตญ์ œ๊ฒฝ์˜์ „๊ณต),2010.8.Maste

    ์ •์ƒํ˜• p53์˜ ์ „์‚ฌํ™œ์„ฑ ๋„๋ฉ”์ธ ์ธ์‚ฐํ™”์™€ ๊ฐ„์•”์˜ ์ž„์ƒ๋ณ‘๋ฆฌ์  ํŠน์„ฑ์˜ ์—ญ๋น„๋ก€ ์ƒ๊ด€๊ด€๊ณ„

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ƒ๋ช…๊ณผํ•™๋ถ€, 2012. 8. ์ •๊ตฌํฅ.๊ตญ๋ฌธ์ดˆ๋ก ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์ : p53 ๋‹จ๋ฐฑ์งˆ์€ ์ž˜ ์•Œ๋ ค์ง„ ์ข…์–‘์–ต์ œ์œ ์ „์ž์ด๋ฉฐ, p53 ์œ ์ „์ž์˜ ๋Œ์—ฐ๋ณ€์ด๋Š” ๊ฐ„์•”์„ ํฌํ•จํ•œ ๋‹ค์–‘ํ•œ ์ข…๋ฅ˜์˜ ์ข…์–‘์—์„œ ๋‚˜์œ ์˜ˆํ›„์™€ ์—ฐ๊ด€๋˜์–ด ์žˆ๋‹ค. ๊ทธ๋Ÿฐ๋ฐ 47.8%์˜ ๊ฐ„์•” ํ™˜์ž์—์„œ ์ •์ƒํ˜• p53์˜ ๋ฐœํ˜„์ด ์ฆ๊ฐ€๋˜์–ด ์žˆ์Œ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , p21๊ณผ ๊ฐ™์€ p53์— ์˜ํ•ด ๋ฐœํ˜„์ด ์œ ๋„๋˜๋Š” ์œ ์ „์ž๋“ค์˜ ๋ฐœํ˜„์€ ์ฆ๊ฐ€๋˜์–ด ์žˆ์ง€ ์•Š๋‹ค. ์ด์— ๋”ฐ๋ผ, ์ •์ƒํ˜• p53์„ ๋ฐœํ˜„ํ•˜๋Š” ๊ฐ„์•”์—์„œ p53์˜ ๊ธฐ๋Šฅ์  ํŠน์„ฑ์„ ์—ฐ๊ตฌํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ ๋ฐฉ๋ฒ•: 115๋ช…์˜ ๊ฐ„์•” ํ™˜์ž์—์„œ ์ถ”์ถœํ•œ ์•”์กฐ์ง์—์„œ p53 ์œ ์ „์ž์˜ ์„œ์—ด์„ ํ™•์ธํ•˜์—ฌ ์ •์ƒํ˜• p53 ๋˜๋Š” ๋Œ์—ฐ๋ณ€์ด p53์„ ๋ฐœํ˜„ํ•˜๋Š” ํ™˜์ž๋ฅผ ๋ถ„๋ฅ˜ํ•˜์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ  p53์˜ ๋ฐœํ˜„, p53 ์ „์‚ฌํ™œ์„ฑ๋„๋ฉ”์ธ์˜ ์ธ์‚ฐํ™”, p21์˜ ๋ฐœํ˜„, Bax์˜ ๋ฐœํ˜„, ๊ทธ๋ฆฌ๊ณ  catalase์˜ ๋ฐœํ˜„ ๋“ฑ์„ ๋ฉด์—ญ๋ธ”๋กฏ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ๊ทธ๋ ‡๊ฒŒ ๋ถ„์„ํ•œ ์ •๋ณด์˜ ์Šคํ”ผ์–ด๋งŒ ์ƒ๊ด€๊ณ„์ˆ˜๋ฅผ ๊ตฌํ•˜์˜€๋‹ค. ๋˜ํ•œ ๊ฐ„์•”์„ธํฌ์ฃผ์ธ HepG2, Huh-7, ๊ทธ๋ฆฌ๊ณ  Hep3B ์„ธํฌ์ฃผ์—์„œ ๋ฉด์—ญ๋ธ”๋กฏ ๋ถ„์„์„ ํ†ตํ•ด p53 ์ „์‚ฌํ™œ์„ฑ๋„๋ฉ”์ธ์˜ ๊ธฐ๋Šฅ์  ํŠน์„ฑ์„ ๋‹ค์‹œ ํ•œ ๋ฒˆ ํ™•์ธํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ ๊ฒฐ๊ณผ: ์ •์ƒํ˜• p53์˜ ๋ฐœํ˜„ ์ •๋„๋Š” ๊ฐ„์•”์˜ ๋ถ„ํ™”๋„์™€ ์–‘์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋‚˜ํƒ€๋‚ด์—ˆ์œผ๋‚˜, p21์˜ ๋ฐœํ˜„ ์ •๋„ ๋ฐ ๊ฐ„๋ฌธ๋งฅ ์นจ์œค ์ •๋„์™€๋Š” ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋‚˜ํƒ€๋‚ด์ง€ ์•Š์•˜๋‹ค. ๋Œ€์‹  p53 ์ „์‚ฌํ™œ์„ฑ๋„๋ฉ”์ธ์˜ ์ธ์‚ฐํ™”๊ฐ€ p21 ๋ฐœํ˜„๊ณผ ์–‘์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๊ฐ€์ง€๋ฉฐ, ๊ฐ„๋ฌธ๋งฅ ์นจ์œค ๋ฐ ๊ฐ„์•”์ ˆ์ œ ํ›„ ์žฌ๋ฐœ๊ณผ ์Œ์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋‚˜ํƒ€๋ƒˆ๋‹ค. ๋˜ํ•œ p53์˜ ํ™œ์„ฑ์„ ์œ„ํ•ด ์ „์‚ฌํ™œ์„ฑ๋„๋ฉ”์ธ์˜ ์ธ์‚ฐํ™”๊ฐ€ ์ค‘์š”ํ•จ์„ p53 ํƒ€๊นƒ ์œ ์ „์ž ๋ฐœํ˜„ ์ธก์ •์„ ํ†ตํ•ด ๋‹ค์‹œ ํ•œ ๋ฒˆ ํ™•์ธํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ ๊ฒฐ๋ก : ์ •์ƒํ˜• p53์„ ๋ฐœํ˜„ํ•˜๋Š” ๊ฐ„์•”์—์„œ p53 ์ „์‚ฌํ™œ์„ฑ๋„๋ฉ”์ธ์˜ ์ธ์‚ฐํ™”๋Š” ๊ฐ„์•”์˜ ์ž„์ƒ๋ณ‘๋ฆฌํ•™์  ํŠน์„ฑ ๋ฐ ์ ˆ์ œ ํ›„ ์žฌ๋ฐœ ํ˜„์ƒ๊ณผ ๊ฐ•ํ•˜๊ฒŒ ์—ฐ๊ด€๋˜์–ด ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ, p53 ์ „์‚ฌํ™œ์„ฑ๋„๋ฉ”์ธ์˜ ์ธ์‚ฐํ™”๊ฐ€ ์ •์ƒํ˜• p53์„ ๊ฐ€์ง„ ๊ฐ„์•”ํ™˜์ž์— ๋Œ€ํ•œ ๋…๋ฆฝ์ ์ธ ์˜ˆํ›„ ํŒ๋‹จ ์ง€ํ‘œ๋กœ์„œ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ์ƒ๊ฐ๋œ๋‹ค. ์ฃผ์š”์–ด: p53 ๋Œ์—ฐ๋ณ€์ด, p21, ์•” ์žฌ๋ฐœ, ๊ฐ„์•” ๋ฐœ๋‹ฌ ๊ณผ์ •Abstract Background & Aims: The p53 protein is a well-known tumor suppressor, and p53 gene mutation is related to poor prognosis in most types of tumors, including hepatocellular carcinoma (HCC). Although the expression of wild-type (WT) p53 protein is increased in 47.8% (43/90) of HCC cases, the WT p53 expression does not correlate with the expression of p53 target genes, such as p21 (Cip1). Thus, we investigated the functional status of p53 in WT p53-carrying HCCs. Methods: We sequenced the p53 gene in 115 HCC samples and classified each sample as WT p53 or mutant (Mut) p53. We analyzed p53 expression, p53 transactivation domain (TAD) phosphorylation, p21 expression, Bax expression and catalase expression in each HCC sample by immunoblot analysis. We investigated the obtained data using Spearman correlation analysis. The functionality of the TAD phosphorylation sites was confirmed by a p53 immunoblot analysis in HepG2, Huh-7, and Hep3B cells. Results: The level of WT p53 protein was positively correlated with HCC grade but not with p21 protein expression (p=0.103) or portal vein invasion (p=0.288). Instead, p53 TAD phosphorylation in WT p53 HCCs was correlated with p21 protein expression (p<0.001) and inversely correlated with both portal vein invasion (p=0.001) and recurrence after surgical resection (p=0.004). The importance of TAD phosphorylation for p53 activity was confirmed by p53 target gene expression. Conclusions: The TAD phosphorylation was strongly associated with clinicopathological features and recurrence after surgical resection in WT p53 HCC. Thus, the TAD phosphorylation may also be an independent prognostic indicator in HCC patients carrying WT p53. Keywords: p53 mutationp21recurrencehepatocarcinogenesisCONTENT ABSTRACT 2 CONTENT 3 LIST OF ABBREVIASTIONS 4 I. Introduction 5 II. Materials and Methods 8 III. Results 11 IV. Discussion 34 V. Supplementary Table 38 VI. References 39 VII. ๊ตญ๋ฌธ์ดˆ๋ก 45Maste
    corecore