27 research outputs found
λ°λ체 μ΄μν μΈμ λ° κ±΄μ‘°κ³Όμ μμ λ°μνλ λ―ΈμΈκ΅¬μ‘°λ¬Ό μμμ λν μ°κ΅¬
νμλ
Όλ¬Έ (λ°μ¬)-- μμΈλνκ΅ λνμ : κΈ°κ³ν곡곡νλΆ, 2014. 8. κΉνΈμ.λ³Έ μ°κ΅¬λ λ°λ체 μΈμ κ³Όμ μμ μ΄μν κΈ°ν¬λ μ¦λ°νλ μ‘λ§κ³Ό λ―ΈμΈ κ΅¬μ‘°λ¬Όκ³Όμ μνΈμμ©μ λνμ¬ λ€λ£¨μλ€. νΉν, λ―ΈμΈκ΅¬μ‘°λ¬Όμ μμκ³Όμ μ μ§μ κ΄μ°°νκ³ κ·Έκ²μ λ°νμΌλ‘ λ―ΈμΈκ΅¬μ‘°λ¬Όμ μμμ μ΅μννλ λ°©λ²μ μ°Ύλλ° μ£Όμμ μ λμλ€.
λ°λ체μΈμ κ³Όμ μ λ―ΈμΈκ΅¬μ‘°λ¬Ό μ μκ³Όμ μμ λ°μνλ μ€μΌμ
μλ₯Ό μ΄μνμ μν λ²λΈ μ§λμ μ΄μ©νμ¬ μ κ±°νκ³ , μΈμ κ³Όμ μ μ¬μ©λ μΈμ μ‘μ κΉ¨λν λ¬Όλ‘ νΉκ΅¬μ΄ 건쑰μν€λ μΌλ ¨μ κ³Όμ μΌλ‘ μ΄λ£¨μ΄μ Έ μλ€. μ΄λ μ΄μνμ μνμ¬ λ°μν κΈ°ν¬λ€μ νκ΄΄μ μΈ μ΄λμΌλ‘ μ€μΌμ
μλΏλ§ μλλΌ λ―ΈμΈκ΅¬μ‘°λ¬Όμλ ν° μΆ©κ²©μ΄ κ°ν΄μ Έ κ΅¬μ‘°λ¬Όμ΄ λΆμμ§κ±°λ, 건쑰νλ κ³Όμ μμ μ‘체μ λͺ¨μΈκ΄νμ μνμ¬ ν¨ν΄λ€μ΄ μλ‘ λ¬λΌλΆλ ν¨ν΄ μμ νμμ΄ λΉλ²νκ² λνλκ³ μλ€. λ°λΌμ λ³Έ μ°κ΅¬μμλ λ°λ체 μΈμ κ³Όμ μ€ λ°μνλ ν¨ν΄μμμ 1) μ΄μν μΈμ μμ νκ΄΄μ μΈ μ΄μν λ²λΈμ μν ꡬ쑰물 μμκ³Ό 2) 건쑰과μ μμ μ¦λ°νλ μ‘λ§μ μν ν¨ν΄ λΆμνμμΌλ‘ λλμ΄ μ§ννμλ€.
λ²λΈμ μ§λμ λ°λ체 μ¨μ΄νΌ, ν¬ν λ§μ€ν¬, λ©€λΈλ μΈ λ± κ³ μ²΄νλ©΄μ λΆμ μ€μΌμ
μλ₯Ό μ κ±°νλ μ΄μνμΈμ μμ μ€μν μν μ νκ³ μλ€. νμ§λ§ κ°ν λ²λΈμ μ§λμ λ―ΈμΈκ΅¬μ‘°λ¬Όμ ν¬κΈ°κ° μ μ μμμ§μ λ°λΌ μ€μΌμ
μλΏλ§ μλλΌ κ΅¬μ‘°λ¬Όμ체μλ ν° μΆ©κ²©μ κ°νμ¬ ν¨ν΄μ΄ μμλλ κ²°κ³Όλ₯Ό μ΄λνκ³ μλ€. λ°λΌμ λ³Έ μ°κ΅¬μμλ μ΄κ³ μ μΉ΄λ©λΌλ₯Ό μ΄μ©νμ¬ ν¨ν΄κ³Ό μνΈμμ©μ νλ λ―ΈμΈλ²λΈμ λνμ¬ κ΄μ°°νκ³ μ΄λ₯Ό λ°νμΌλ‘ λ²λΈμ μ΄λμ λ€ κ°μ§λ‘ λΆλ₯(λΆνΌμ§λ, νμμ§λ, λΆλ¦¬μ΄λ, 무μμμ§λ)νμλ€. λν, μ€ν쑰건μ λ°λΌ λ²λΈμ΄λμ μμΈ‘νλ μ§λ(regime map)λ₯Ό λ§λ€μ΄, κ° μ΄λμ νΉμ±μ νμ
νκ³ μ€μ λ―ΈμΈκ΅¬μ‘°λ¬Όμ μμμ μ£Όλ λ²λΈμ μμμ κ΄μ°°νμ¬ λ²λΈμ ν¬κΈ°κ° μμ λλ λΆλ¦¬μ΄λμΌλ‘ ꡬ쑰물μ μμμ κ°νκ³ , λ²λΈμ ν¬κΈ°κ° ν΄ λλ νκ΄΄μ μΈ λ¬΄μμμ μΈ μ΄λμΌλ‘ λ―ΈμΈκ΅¬μ‘°λ¬Όμ μμμ μΌκΈ°μν¨λ€λ κ²μ λ°νλ€.
건쑰과μ μ μΈμ κ³Όμ μ€ κ°μ₯ λ§μ§λ§ λ¨κ³λ‘ μ‘λ§μ΄ μ¦λ°ν¨μ λ°λΌ μ‘체κ³λ©΄μ΄ λ―ΈμΈκ΅¬μ‘°λ¬Ό λμ κ±Έλ¦¬κ³ μ‘체κ³λ©΄κ³Ό κ³ μ²΄νλ©΄ μ¬μ΄ λͺ¨μΈκ΄ν(capillary force)μ μνμ¬ κ΅¬μ‘°λ¬Όμ λμ΄λΉκ²¨ ꡬ쑰물λ€μ΄ μλ‘ λ¬λΌλΆλ ν¨ν΄ λΆμνμμ΄ λ°μνλ€. λ³Έ μ°κ΅¬μμλ λ§μ΄ν¬λ‘ μ€μΌμΌμ νμ± ν΄λ¦¬λ¨Έ ν¨ν΄λ€μ λ§λ€μ΄ μ‘λ§μ΄ μ¦λ°ν¨μ λ°λΌ ν¨ν΄κ³Ό μ‘λ§μ¬μ΄ λνλλ νμ±λͺ¨μΈκ΄(elastocapillary)νμμ κ°μννκ³ , κ°λ¨ν λͺ¨λΈμ μ΄μ©νμ¬ ν¨ν΄λ€μ΄ λΆλ νμμ μμΈ‘νμλ€. λ ν ν¨ν΄μ νλ©΄μ¨λ λ³νλ₯Ό ν΅νμ¬ ν¨ν΄μ¬μ΄ μ‘λ§μ μ¦λ°μμ λ³νλ₯Ό μ΄μ©νμ¬ λ―ΈμΈκ΅¬μ‘°λ¬Ό λΆμνμμ μ΅μννλ λ°©λ²μ μ€νμ μΌλ‘ λ°νλ€.
λ³Έ μ°κ΅¬λ λ°λ체 μΈμ κ³Όμ μ€ λ°μνλ λ―ΈμΈν¨ν΄ μμμ λνμ¬ κ·Έ νμμ μ§μ κ΄μ°°νμ¬ ν¨ν΄μμμ λν 물리μ μ΄ν΄λ₯Ό λμ°λ©°, κ΄μ°°ν κ²°κ³Όλ₯Ό λ°νμΌλ‘ λ―ΈμΈν¨ν΄ μμμ μ΅μν μν¬ μ μλ λ°©λ²μ λνμ¬ μ μνμλ€.In this work, we consider the interactions between microscale structures and liquid interfaces of either bubbles or evaporating films in semiconductor cleaning processes. Our particular interests lie in visualization of the microstructure damages, and construction of a stability regime map that guides us to find a process condition that avoids pattern damage in semiconductor cleaning processes.
The semiconductor cleaning process is composed of removing contaminants produced during the fabrication process using the gas bubble oscillation from ultrasounds and rinsing the cleaning solution used in the cleaning with clean water for drying. Here, the disruptive bubble behavior due to the ultrasound breaks apart structures as strong forces are applied to the microstructure as well as the contaminant particles. Also, in the drying process, pattern damage phenomenon is frequently observed where the patterns adhere to each other due to the capillary forces of the liquid. Therefore, this study was conducted by dividing the pattern damage occurring during semiconductor cleaning as 1) the structural damage occurring during the ultrasonic cleaning due to the destructive ultrasound bubbles and 2) the clustering of microstructures due to liquid film evaporation during the drying process.
Bubble oscillations play a crucial role in ultrasonic cleaning, a process by which micro- and nanoscale contaminant particles are removed from solid surfaces, such as semiconductor wafers, photomasks and membranes. Although it is well known that the ultrasonic cleaning may damage the functional patterns of ever-shrinking size in current manufacturing technology while removing dust and debris, the mechanisms leading to such damage have been elusive. Here we report observations of the dynamics of bubbles that yield microstructure damage under a continuous ultrasonic field via high-speed imaging. We find that the bubble behavior can be classified into four types, namely volume oscillation, shape oscillation, splitting and chaotic oscillation, depending on the acoustic pressure and bubble size. This allows us to construct a regime map that can predict the bubble behavior near a wall based on the experimental parameters. Our visualization experiments reveal that damage of microwalls and microcantilevers arises due to either splitting small bubbles or chaotically oscillating large bubbles in the ultrasonic field, with the forces generated by them quantitatively measured.
As a liquid film covering an array of micro- or nanoscale pillars or walls evaporates, its meniscus straddling the microstructures pull the elastic patterns together because of surface-tension effects, leading to self-organization of slender microstructures. While this elastocapillary coalescence may provide various useful properties, such as particle-trapping and adhesion, it is detrimental in a semiconductor manufacturing process using a liquid film to rinse a wafer, called the spin drying. The contact of micro- and nanopatterns in semiconductor chips imply failure in the electrical circuit. To understand and find a way to prevent such phenomena, we visualize the clustering behavior of polymer micropatterns with the evaporation of liquid film while varying the sizes and temperature of the micropatterns. We find a critical role of substrate temperature in preventing the collapse of the patterns via changing the evaporation rate and behavior of the liquid film. Also, we construct a regime map that guides us to find a process condition to avoid pattern collapse in semiconductor manufacturing.
Our work provides physical understanding of interaction between micro- or nanoscale structures and liquid interfaces that are formed by either bubbles near patterns or evaporating liquid films between the patterns, and gives theoretical insights that can be applied for improving pattern damage problems in semiconductor cleaning processes.Abstract
Contents
List of Figures
List of Tables
1 Introduction
2 Disruptive bubble behavior leading to microstructure damage in an ultrasonic field
2.1 Introduction
2.2 Experiments
2.3 Observations of microbubble behavior
2.4 Observations of micropattern-damaging processes
2.4.1 Array of microwalls
2.4.2 Array of microcantilevers
2.5 Conclusions
3 Visualization and minimization of clustering of microstructures due to liquid film evaporation
3.1 Introduction
3.2 Experiments
3.3 The process of pattern collapse
3.3.1 End-contact due to capillary forces during evaporation
3.3.2 Permanent adhesion due to surface energy after evaporation
3.4 The effects of substrate temperature
3.5 Conclusions
4 Concluding remarks
4.1 Conclusions
4.2 Outlook
References
Abstract (in Korean)Docto