23 research outputs found

    Empirical study on the location patterns of retail trade adjacent to large-scale discount store

    No full text
    ν•™μœ„λ…Όλ¬Έ (석사)-- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : κ±΄μ„€ν™˜κ²½κ³΅ν•™λΆ€, 2011.2. 정창무.Maste

    Best Learnerμ—κ²Œ λ“£λŠ” ν•™μŠ΅ μ „λž΅ λ…Έν•˜μš° 2

    Get PDF

    A 클래슀 μ˜€ν”ΌμŠ€λΉŒλ”© μ‹œμž₯의 κΈ€λ‘œλ²Œ 경쟁λ ₯ : 닀이아λͺ¬λ“œ λͺ¨λΈμ„ μ΄μš©ν•œ μ„œμšΈ, 도쿄, 홍콩, 싱가포λ₯΄ μ‹œμž₯의 비ꡐ뢄석

    No full text
    ν•™μœ„λ…Όλ¬Έ(석사) --μ„œμšΈλŒ€ν•™κ΅ κ΅­μ œλŒ€ν•™μ› :κ΅­μ œν•™κ³Ό(κ΅­μ œν†΅μƒμ „κ³΅),2009.8.Maste

    Polarization Switching Kinetics in Ferroelastic BiFeO3 Films

    No full text
    Multiferroic BiFeO3 (BFO) has recently attracted plenty of interest due to the coexistence of robust room-temperature ferroelectricity and antiferromagnetism. Understanding the effect of various disorders (e.g., strain and defects) is of great significance for device application of BFO thin films. In BFO, which has strong coupling between ferroelectic polarization and ferroelastic domain, the crystallographic structure is susceptible to strain. At the ferroelastic boundaries accompanying structural distortion, the presence of impurity phase or misfit dislocation has been reported. Additionally, point defects are easily created during the film deposition because of the volatility of Bi ion. There have been recent reports on how such disorders affect intriguing static material properties in BFO films. But, the detailed investigation of dynamic properties has been rare. The control of domain walls in ferroic materials is currently an important issue for the potential application of domain wall motion to microelectronic devices. It has been recently proposed that the controlled movement of domain walls in magnetic nanowires can be utilized for nonvolatile racetrack memory of high performance. In addition, domain wall-induced conductivity modulation in a BFO thin film was reported, providing a basis for new device concepts using the ferroelectric domain walls. These domain wall devices require precise control of motion as well as location of the domain walls. We report on the directional growth of ferroelectric domains in a multiferroic BFO thin film, which was epitaxially grown on a vicinal (001) SrTiO3 (STO) substrate. A detailed structural analysis of the film shows that a strain gradient, which can cause a symmetry breaking in ferroelectric double-well potential, causes ferroelectric domains to grow with preferred directionality under an electric field. Our results reveal the possibility of controlling the direction of domain growth using an electric field by imposing constraints on ferroelectric films, such as a strain gradient. In epitaxial BFO(111) capacitors with disordered top and well-ordered bottom interfaces, we report intriguing switching-polarity dependence in the polarization reversal. Ferroelectric coercive voltages and polarization switching behaviors in BFO(111) capacitors are quite different for the polarity of applied electric bias. Piezoresponse force microscopy revealed that the ferroelectric domain evolution is governed either by nucleation or by domain wall motion depending on the direction of external electric field. The polarity dependence of ferroelectric switching kinetics is attributed to asymmetric local internal fields near the film/electrode interfaces. It is probably due to differences in various disorders by structural relaxation such as defects, elastic strain, and surface roughness. In Bi-deficient BFO films, we show a reversible change of ferroelectric hysteresis under voltage stress. Surprisingly, for negative voltage stress, pristine hysteresis loops were shrunk with the decrease of remnant polarization and coercive voltage. For positive recovery bias, the shrunk hysteresis loops in stressed states were recovered to the original those. Upward polarization switching under negative voltage stress is explained by defect-mediated domain nucleation and thermally-activated domain wall motion. It is highly likely that pinning of the switched upward domains is attributed to a charge trapping process of injected carrier at domain walls, resulting in hysteresis contraction. The charge-trapped domain walls might be responsible for the transient behavior of current density. The better understanding of disorder effects in ferroelectric domain switching dynamics plays a crucial role for device application of BFO thin films. Keywords: thin film, ferroelectric, ferroelastic, BiFeO3, polarization switching kinetics, domain wall, strain, defect, hysteresis. Student number: 2006-20324졜근 BiFeO3 (BFO)λŠ” μƒμ˜¨ κ°•μœ μ „μ„±κ³Ό λ°˜κ°•μžμ„±μ˜ 곡쑴으둜 인해 λ§Žμ€ 관심을 λ°›κ³  μžˆλŠ” 닀강체 λ¬Όμ§ˆμ΄λ‹€. κ·ΈλŸ¬ν•œ BFOμ—μ„œ 응λ ₯μ΄λ‚˜ 결함과 같은 λ¬΄μ§ˆμ„œ μš”μ†Œλ“€μ΄ μ–΄λ– ν•œ 영ν–₯을 λΌμΉ˜λŠ” 지λ₯Ό μ΄ν•΄ν•˜λŠ” 것은 BFO λ°•λ§‰μ˜ μ†Œμž μ‘μš©μ„ μœ„ν•΄ 맀우 μ€‘μš”ν•˜λ‹€. μ‹€μ œλ‘œ, BFO 내에 κ°•μœ μ „μ„± λΆ„κ·Ήκ³Ό 강탄성 ꡬ쑰 사이에 κ°•ν•œ κ²°ν•©μœΌλ‘œ 인해 κ·Έ κ²°μ • κ΅¬μ‘°λŠ” 응λ ₯에 맀우 λ―Όκ°ν•˜λ‹€. 이미 ꡬ쑰적 λΉ„λš€μ–΄μ§μ„ λ™λ°˜ν•˜λŠ” 강탄성 κ²½κ³„μ—μ„œ 뢈순물 μƒμ΄λ‚˜ 격자 μ–΄κΈ‹λ‚¨μ˜ μ‘΄μž¬κ°€ λ³΄κ³ λ˜μ—ˆλ‹€. λ˜ν•œ, BFO 박막 증착 μ€‘μ—λŠ” λΉ„μŠ€λ¬΄μŠ€ 이온의 νœ˜λ°œμ„± λ•Œλ¬Έμ— 점 결함듀이 μ‰½κ²Œ μƒμ„±λœλ‹€. 졜근, μ΄λŸ¬ν•œ λ¬΄μ§ˆμ„œ μš”μ†Œλ“€μ΄ BFO 박막 λ‚΄μ˜ 정적인 물성에 μ–΄λ–»κ²Œ 영ν–₯을 λΌμΉ˜λŠ” 지에 λŒ€ν•œ λ§Žμ€ 보고듀이 μžˆμ–΄μ™”λ‹€. ν•˜μ§€λ§Œ, 동적인 νŠΉμ„±μ— λŒ€ν•œ μƒμ„Έν•œ μ‘°μ‚¬λŠ” 맀우 λ“œλ¬Όμ—ˆλ‹€. κ°•μœ μ „ λ˜λŠ” κ°•μžμ„± λ¬Όμ§ˆλ“€μ—μ„œ ꡬ역벽을 μ‘°μ ˆν•˜λŠ” 것은 ꡬ역벽 μš΄λ™μ„ μ΄μš©ν•œ μƒˆλ‘œμš΄ 마이크둜 μ†Œμž κ°œλ°œμ„ μœ„ν•΄ 맀우 μ€‘μš”ν•œ μ΄μŠˆμ΄λ‹€. 졜근, μžμ„±μ²΄ λ‚˜λ…Έμ„ μ—μ„œ ꡬ역벽 μš΄λ™μ„ μ‘°μ ˆν•¨μœΌλ‘œμ¨ μƒˆλ‘œμš΄ ν˜•νƒœμ˜ κ³ μ„±λŠ₯ λΉ„νœ˜λ°œμ„± 자ꡬ벽 λ©”λͺ¨λ¦¬ (즉, racetrack λ©”λͺ¨λ¦¬)κ°€ μ œμ•ˆλ˜μ—ˆλ‹€. λ˜ν•œ, BFO λ°•λ§‰μ—μ„œλŠ” ν₯미둜운 ꡬ역벽 전도성이 λ°œκ²¬λ˜μ—ˆλ‹€. κ·ΈλŸ¬ν•œ ꡬ역벽 전도성은 κ°•μœ μ „ ꡬ역벽을 μ΄μš©ν•œ μ‹ κ°œλ… μ†Œμž κ°œλ°œμ„ μœ„ν•œ κΈ°μ΄ˆκ°€ λ˜μ—ˆλ‹€. μ΄λŸ¬ν•œ ꡬ역벽 μ†Œμžμ˜ κ°œλ°œμ„ μœ„ν•΄μ„œλŠ” κ΅¬μ—­λ²½μ˜ μš΄λ™ 뿐만 μ•„λ‹ˆλΌ μœ„μΉ˜κΉŒμ§€ μ •ν™•νžˆ μ‘°μ ˆν•˜λŠ” 것이 맀우 μ€‘μš”ν•˜λ‹€. μ—¬κΈ°μ„œ, μš°λ¦¬λŠ” 경사진 SrTiO3 (STO) 기판 μœ„μ— 증착된 BFO λ°•λ§‰μ—μ„œ κ°•μœ μ „ ꡬ역이 μ–΄λ–€ λ°©ν–₯성을 가지고 μ„±μž₯ν•˜λŠ” 것을 λ³΄κ³ ν•œλ‹€. μžμ„Έν•œ ꡬ쑰적인 뢄석을 톡해 μš°λ¦¬λŠ” BFO 박막 λ‚΄ 응λ ₯ gradientκ°€ μ‘΄μž¬ν•˜λŠ” 것을 λ°œκ²¬ν•˜μ˜€λ‹€. κ·ΈλŸ¬ν•œ 응λ ₯ gradientλŠ” κ°•μœ μ „ 쌍우물 ν¬ν…μ…œμ˜ λŒ€μΉ­μ„±μ„ 깨뜨리고, κ°•μœ μ „ ꡬ역듀이 μ™ΈλΆ€ μ „κΈ°μž₯ ν•˜μ—μ„œ νŠΉμ • λ°©ν–₯을 μ„ ν˜Έν•˜λ©΄μ„œ μ„±μž₯ν•˜λ„λ‘ ν•œλ‹€. 이 κ²°κ³ΌλŠ” κ°•μœ μ „μ²΄ λ°•λ§‰μ—μ„œ 응λ ₯ gradientλ₯Ό ν†΅ν•œ ꡬ역 μ„±μž₯의 λ°©ν–₯성을 μ „κΈ°μ μœΌλ‘œ 쑰절 κ°€λŠ₯ν•˜λ‹€λŠ” 것을 보여쀀닀. λ¬΄μ§ˆμ„œν•œ 상뢀 계면과 λ¬΄μ§ˆμ„œν•˜μ§€ μ•Šμ€ ν•˜λΆ€ 계면을 가진 μΌœμŒ“μ€ BFO(111) μΊνŒ¨μ‹œν„°μ—μ„œ μš°λ¦¬λŠ” κ°•μœ μ „ λΆ„κ·Ή λ°˜μ „μ΄ κ·Ήμ„± μ˜μ‘΄μ„±μ„ λ³΄κ³ ν•œλ‹€. μ—¬κΈ°μ—μ„œλŠ”, κ°•μœ μ „ coercivity와 λΆ„κ·Ή λ°˜μ „μ΄ κ°€ν•΄μ€€ λ°”μ΄μ–΄μŠ€μ˜ 극성에 따라 맀우 λ‹€λ₯΄λ‹€. 압전감응 힘 ν˜„λ―Έκ²½μ€ κ°•μœ μ „ ꡬ역 μ„±μž₯이 κ°€ν•΄μ€€ μ „κΈ°μž₯의 λ°©ν–₯에 따라 ꡬ역 ν•΅ ν˜•μ„± λ˜λŠ” ꡬ역벽 μš΄λ™μ— μ˜ν•΄ μ§€λ°°λ˜λŠ” 것을 λ³΄μ—¬μ£Όμ—ˆλ‹€. μ΄λŸ¬ν•œ κ°•μœ μ „ ꡬ역 λ°˜μ „μ˜ κ·Ήμ„± μ˜μ‘΄μ„±μ€ 박막/μ „κ·Ή κ³„λ©΄μ—μ„œμ˜ λ‚΄λΆ€ κ΅­μ†Œ μ „κΈ°μž₯의 λΉ„λŒ€μΉ­μ  뢄포에 μ˜ν•΄μ„œ κΈ°μΈν•œλ‹€. ꡬ쑰적 풀림에 μ˜ν•œ λ¬΄μ§ˆμ„œ μš”μ†Œ (결함, 응λ ₯, ν‘œλ©΄ κ±°μΉ κΈ°)μ—μ„œμ˜ 차이가 μ΄λŸ¬ν•œ λΉ„λŒ€μΉ­ λ‚΄λΆ€ κ΅­μ†Œ μ „κΈ°μž₯을 μ•ΌκΈ°ν–ˆμ„ 것 κ°™λ‹€. λΉ„μŠ€λ¬΄μŠ€ 이온이 λΆˆμΆ©λΆ„ν•œ BFO 박막에 λŒ€ν•΄, μš°λ¦¬λŠ” μ™ΈλΆ€ μ „μ•• stress에 μ˜ν•΄μ„œ κ°•μœ μ „μ²΄ 이λ ₯곑선이 κ°€μ—­μ μœΌλ‘œ λ³€ν™”ν•˜λŠ” 것을 보여쀀닀. λ†€λžκ²Œλ„, 음극 μ „μ•• stress에 λŒ€ν•΄μ„œ 이λ ₯곑선은 μžλ°œλΆ„κ·Ήκ³Ό coercive μ „μ••μ˜ κ°μ†Œλ₯Ό λ™λ°˜ν•˜λ©΄μ„œ μ›λž˜ μƒνƒœλ‘œλΆ€ν„° μˆ˜μΆ•λ˜μ—ˆλ‹€. ν•œνŽΈ, μ–‘κ·Ή μ „μ•• stress에 λŒ€ν•΄μ„œ κ·Έ μˆ˜μΆ•λœ 이λ ₯곑선은 μ›λž˜ μƒνƒœλ‘œ νšŒλ³΅λ˜μ—ˆλ‹€. 음극 μ „μ•• stress ν•˜μ—μ„œμ˜ μœ„μͺ½ λΆ„κ·Ή μƒνƒœλ‘œμ˜ λ°˜μ „μ€ 결함이 맀개된 ꡬ역 ν•΅ ν˜•μ„±κ³Ό μ—΄μ μœΌλ‘œ ν™œμ„±ν™”λœ ꡬ역벽 μš΄λ™μ— μ˜ν•΄μ„œ μ„€λͺ…될 수 μžˆλ‹€. λ°˜μ „λœ μœ„μͺ½ κ΅¬μ—­μ˜ pinning ν˜„μƒμ€ μ™ΈλΆ€μ—μ„œ μ£Όμž…λœ μ „ν•˜μ˜ κ΅¬μ—­λ²½μ—μ„œμ˜ trapping κ³Όμ •μœΌλ‘œ 인해 μΌμ–΄λ‚˜λŠ” 것 κ°™λ‹€. 그리고, μ΄λŸ¬ν•œ pinning ν˜„μƒμ΄ 이λ ₯κ³‘μ„ μ˜ μˆ˜μΆ•μ„ μ•ΌκΈ°ν•œλ‹€. κ·ΈλŸ¬ν•œ μ „ν•˜κ°€ trap된 ꡬ역벽이 μ „λ₯˜λ°€λ„μ—μ„œμ˜ μΌμ‹œμ μΈ 변화에 μ±…μž„μ΄ μžˆλŠ” 것 κ°™λ‹€. κ°•μœ μ „ ꡬ역 λ°˜μ „ λ™μ—­ν•™μ—μ„œμ˜ λ¬΄μ§ˆμ„œ νš¨κ³Όμ— λŒ€ν•œ κ·ΈλŸ¬ν•œ 더 λ‚˜μ€ μ΄ν•΄λŠ” BFO λ°•λ§‰μ˜ μ†Œμž μ‘μš©μ— μžˆμ–΄μ„œ 결정적인 역할을 ν•  것이닀. μ£Όμš”μ–΄: 박막, κ°•μœ μ „μ²΄, 강탄성체, λΉ„μŠ€λ¬΄μŠ€ 페라이트, λΆ„κ·Ή λ°˜μ „ 동역학, ꡬ역벽, 응λ ₯, 결함, 이λ ₯ν˜„μƒ. ν•™λ²ˆ 2006-20324Docto

    λ§Œμ„± Cν˜• 간염에 λŒ€ν•œ 초기 κ³ μš©λŸ‰ μΈν„°νŽ˜λ‘ λ¦¬λ°”λΉ„λ¦° 병합 치료 : κΈ°μ‘΄ μΈν„°νŽ˜λ‘ λ¦¬λ°”λΉ„λ¦° λ³‘ν•©μΉ˜λ£Œμ™€μ˜ 비ꡐ

    No full text
    ν•™μœ„λ…Όλ¬Έ(석사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :μ˜ν•™κ³Ό 내과학전곡,2002.Maste

    Cν˜•κ°„μ—Όλ°”μ΄λŸ¬μŠ€μ˜ PKR κ²°ν•©λΆ€μœ„ λŒμ—°λ³€μ΄ 뢄석 : ν•­λ°”μ΄λŸ¬μŠ€ μΉ˜λ£Œμ— λŒ€ν•œ λ°˜μ‘κ³Όμ˜ μ—°κ΄€μ„±

    No full text
    Thesis (doctoral)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :μ˜ν•™κ³Ό λ‚΄κ³Όν•™ 전곡,2004.Docto

    νƒ­ 인덕터λ₯Ό μ μš©ν•œ μž„κ³„λͺ¨λ“œκ΅¬λ™ μ»¨λ²„ν„°μ˜ λͺ¨λΈλ§ 및 뢄석

    No full text
    ν•™μœ„λ…Όλ¬Έ(석사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :전기·컴퓨터곡학뢀,2004.Maste
    corecore