76 research outputs found

    ์„œ์šธ PM2.5์™€ PM1.0์˜ ์˜ค์—ผ์› ์ถ”์ •๊ณผ ์‚ฐํ™” ์ž ์žฌ๋ ฅ ํ‰๊ฐ€

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๋ณด๊ฑด๋Œ€ํ•™์› ํ™˜๊ฒฝ๋ณด๊ฑดํ•™๊ณผ, 2022. 8. ์ด์Šน๋ฌต.Since PM1.0 is mainly emitted from anthropogenic processes and contributes greatly to the health effects of PM2.5, the need for research into PM1.0 as well as PM2.5 is growing. In this study, the constituents of PM2.5 and PM1.0 in Seoul were analyzed and the oxidative potential was measured by dithiothreitol (DTT) assay. The sources were identified by positive matrix factorization (PMF) and their characteristics were compared by conditional bivariate probability function (CBPF), cluster analysis, and potential source contribution function (PSCF). In the average mass concentration of 123 samples collected in Seoul, PM1.0 (15.1 ยตg/m3) accounted for about 75% of PM2.5 (20.1 ยตg/m3). This indicates that secondary sources and combustion-related sources mainly contribute to PM2.5. The organic carbon (OC), SO42-, and NH4+ fractions were significantly higher in PM1.0 than in PM2.5. For the crustal elements, the fraction was significantly higher in PM2.5 than in PM1.0. In the result of the PMF model, ten sources contributed to PM2.5 and PM1.0, and each source and its contribution (ยตg/m3) were as follows (PM2.5, PM1.0). Secondary nitrate: 6.01 (29%), 5.23 (32%); Secondary sulfate: 3.64 (17%), 3.48 (22%); Mobile: 2.71 (13%), 1.81 (11%); Biomass burning: 2.69 (13%), 2.03 (13%); Incinerator: 0.81 (3.8%), 0.69 (4.3%); Soil: 0.61 (2.9%), 0.30 (1.9%); Industry: 1.65 (7.8%), 0.40 (2.5%); Coal combustion: 1.77 (8.4%), 1.22 (7.6%); Oil combustion 0.40 (1.9%), 0.35 (2.2%); Aged sea salt: 0.72 (3.4%), 0.64 (4.0%). The fractional contributions (%) of secondary sources (secondary nitrate and secondary sulfate) in PM1.0 were higher than in PM2.5. For industry and soil sources, the fractional contributions were higher in PM2.5 than in PM1.0. In mobile source, there was a difference in constituents by road dust. The CBPF plots showed the direction of sources around Seoul. These plots showed that many sources were influenced from industrial complexes located in the south and the west of Seoul. For the cluster analysis, the contribution of biomass burning increased when backward trajectories flowed through Manchuria and North Korea. In the cluster flowing from Shandong Province, the contribution of secondary sources increased. Also, in PSCF, North China Plain including Shandong Province was mainly indicated as a possible source area of secondary sources, and the contributions of these sources increased significantly when high concentration events (HCEs) occurred. In particular, secondary sulfate from North China Plain contributed greatly to PM1.0 when HCEs occurred during seasonal management period (SMP). The DTTv of PM2.5 and PM1.0 were 0.611 nmol/min/m3 and 0.588 nmol/min/m3, respectively. PM1.0 contributed mostly to the oxidative potential of PM2.5. In Pearson correlation analysis, OC showed the highest correlation with DTTv (PM2.5: r=0.873, PM1.0: r=0.786). By the multiple linear regression, secondary nitrate and biomass burning were selected as variables to represent DTTv in both PM2.5 and PM1.0. In this result, biomass burning was an important source related to oxidative potential and secondary nitrate showed the influence of secondary formation process. This study showed that the continuous studies of PM1.0 were necessary to understand the characteristics of sources and oxidative potential, and showed that management of secondary sources and biomass burning source in Seoul was necessary.PM1.0์€ ์ธ์œ„์  ๊ณผ์ •์—์„œ ์ฃผ๋กœ ๋ฐฐ์ถœ๋˜๊ณ  PM2.5์˜ ๊ฑด๊ฐ• ์˜ํ–ฅ์— ๋Œ€๋ถ€๋ถ„์„ ์ฐจ์ง€ํ•˜๊ธฐ ๋•Œ๋ฌธ์— PM2.5๋ฟ๋งŒ ์•„๋‹ˆ๋ผ PM1.0์— ๋Œ€ํ•œ ์—ฐ๊ตฌ์˜ ํ•„์š”์„ฑ์€ ์ปค์ง€๊ณ  ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์„œ์šธ์˜ PM2.5์™€ PM1.0์˜ ์„ฑ๋ถ„์„ ๋ถ„์„ํ•˜๊ณ  dithiothreitol (DTT) ๋ถ„์„์„ ํ†ตํ•ด ์‚ฐํ™” ์ž ์žฌ๋ ฅ์„ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ๋˜ํ•œ, positive matrix factorization (PMF)์„ ํ†ตํ•ด ์˜ค์—ผ์›์„ ์ถ”์ •ํ•˜์˜€๊ณ  conditional bivariate probability function (CBPF), cluster analysis, potential source contribution function (PSCF)๋ฅผ ํ†ตํ•ด ์˜ค์—ผ์›๋“ค์˜ ํŠน์ง•์„ ๋น„๊ตํ•˜์˜€๋‹ค. ์„œ์šธ์—์„œ ์ฑ„์ทจํ•œ 123๊ฐœ ์‹œ๋ฃŒ์˜ ํ‰๊ท  ์งˆ๋Ÿ‰๋†๋„์—์„œ PM1.0 (15.1 ยตg/m3)์ด PM2.5 (20.1 ยตg/m3)์˜ ์•ฝ 75%๋ฅผ ์ฐจ์ง€ํ•˜์˜€๋‹ค. ์ด๋Š” ์ด์ฐจ ์ƒ์„ฑ๊ณผ ์—ฐ์†Œ๊ด€๋ จ ์˜ค์—ผ์›์ด PM2.5์— ํฌ๊ฒŒ ๊ธฐ์—ฌํ•˜๋Š” ๊ฒƒ์„ ๋‚˜ํƒ€๋‚ธ๋‹ค. Organic carbon (OC), SO42-, NH4+๋Š” PM1.0์—์„œ ์œ ์˜ํ•˜๊ฒŒ ํฐ ๋น„์œจ์„ ์ฐจ์ง€ํ•˜๊ณ  ์žˆ์—ˆ๊ณ  ์ง€๊ฐ ์„ฑ๋ถ„์˜ ๋น„์œจ์€ PM2.5์—์„œ ์œ ์˜ํ•˜๊ฒŒ ์ปธ๋‹ค. PMF ๊ฒฐ๊ณผ 10๊ฐœ์˜ ์˜ค์—ผ์›์ด ๊ธฐ์—ฌํ–ˆ์œผ๋ฉฐ, ๊ฐ๊ฐ์˜ ์˜ค์—ผ์›๊ณผ ๊ธฐ์—ฌ๋„(ยตg/m3)๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค(PM2.5, PM1.0). ์ด์ฐจ ์งˆ์‚ฐ์—ผ: 6.01 (29%), 5.23 (32%); ์ด์ฐจ ํ™ฉ์‚ฐ์—ผ: 3.64 (17%), 3.48 (22%); ์ž๋™์ฐจ: 2.71 (13%), 1.81 (11%); ์ƒ๋ฌผ์„ฑ์—ฐ์†Œ: 2.69 (13%), 2.03 (13%); ์†Œ๊ฐ: 0.81 (3.8%), 0.69 (4.3%); ํ† ์–‘: 0.61 (2.9%), 0.30 (1.9%); ์‚ฐ์—…: 1.65 (7.8%), 0.40 (2.5%); ์„ํƒ„์—ฐ์†Œ: 1.77 (8.4%), 1.22 (7.6%); ๊ธฐ๋ฆ„์—ฐ์†Œ: 0.40 (1.9%), 0.35 (2.2%); ๋…ธํ›„ ํ•ด์—ผ: 0.72 (3.4%), 0.64 (4.0%). ์ด์ฐจ ์ƒ์„ฑ ์˜ค์—ผ์›(์ด์ฐจ ์งˆ์‚ฐ์—ผ๊ณผ ์ด์ฐจ ํ™ฉ์‚ฐ์—ผ)์€ PM1.0์—์„œ ๋” ํฐ ๊ธฐ์—ฌ๋„ ๋น„์œจ์„ ์ฐจ์ง€ํ–ˆ์œผ๋ฉฐ, ์‚ฐ์—…๊ณผ ํ† ์–‘ ์˜ค์—ผ์›์˜ ๊ธฐ์—ฌ๋„ ๋น„์œจ์€ PM2.5์—์„œ ๋” ๋†’์•˜๋‹ค. ์ž๋™์ฐจ ์˜ค์—ผ์›์—์„œ๋Š” ๋„๋กœ ๋จผ์ง€๋กœ ์ธํ•œ ์„ฑ๋ถ„์˜ ์ฐจ์ด๊ฐ€ ๋‚˜ํƒ€๋‚ฌ๋‹ค. CBPF๋Š” ์„œ์šธ ์ฃผ๋ณ€์˜ ์˜ค์—ผ์› ๋ฐฉํ–ฅ์„ ์ž˜ ๋‚˜ํƒ€๋‚ด๊ณ  ์žˆ์—ˆ์œผ๋ฉฐ ๋งŽ์€ ์˜ค์—ผ์›๋“ค์ด ๋‚จ์ชฝ๊ณผ ์„œ์ชฝ์— ์œ„์น˜ํ•œ ์‚ฐ์—…๋‹จ์ง€์˜ ์˜ํ–ฅ์„ ๋ฐ›๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ํด๋Ÿฌ์Šคํ„ฐ ๋ถ„์„์—์„œ๋Š” ์—ญ๊ถค์ ์ด ๋งŒ์ฃผ์™€ ๋ถํ•œ์„ ํ†ตํ•ด ์œ ์ž…๋  ๋•Œ ์ƒ๋ฌผ์„ฑ์—ฐ์†Œ์˜ ๊ธฐ์—ฌ๋„๊ฐ€ ๋†’์•„์กŒ๊ณ , ์‚ฐ๋‘ฅ์„ฑ์—์„œ ์œ ์ž…๋˜๋Š” ๊ฒฝ์šฐ ์ด์ฐจ ์ƒ์„ฑ ์˜ค์—ผ์›์˜ ๊ธฐ์—ฌ๋„๊ฐ€ ์ฆ๊ฐ€ํ–ˆ๋‹ค. PSCF ๊ฒฐ๊ณผ์—์„œ๋„ ์ฃผ๋กœ ์‚ฐ๋‘ฅ์„ฑ์„ ํฌํ•จํ•œ North China Plain์ด ์ด์ฐจ ์ƒ์„ฑ ์˜ค์—ผ์›์˜ ์˜ค์—ผ์› ๊ฐ€๋Šฅ์ง€์—ญ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๊ณ  ์ด ์˜ค์—ผ์›๋“ค์€ ๊ณ ๋†๋„ ์‚ฌ๋ก€ ์‹œ ๊ธฐ์—ฌ๋„๊ฐ€ ์œ ์˜ํ•˜๊ฒŒ ์ฆ๊ฐ€ํ•˜์˜€๋‹ค. ํŠนํžˆ, North China Plain์œผ๋กœ๋ถ€ํ„ฐ์˜ ์ด์ฐจ ํ™ฉ์‚ฐ์—ผ์€ ๊ณ„์ ˆ๊ด€๋ฆฌ์ œ๊ธฐ๊ฐ„ ๋™์•ˆ ๊ณ ๋†๋„ ์‚ฌ๋ก€ ์‹œ PM1.0์— ํฌ๊ฒŒ ๊ธฐ์—ฌํ–ˆ๋‹ค. PM2.5์™€ PM1.0์˜ DTTv (nmol/min/m3)๋Š” ๊ฐ๊ฐ 0.611, 0.588๋กœ PM2.5์˜ ์‚ฐํ™” ์ž ์žฌ๋ ฅ์˜ ๋Œ€๋ถ€๋ถ„์— PM1.0์ด ๊ธฐ์—ฌํ–ˆ๋‹ค. Pearson ์ƒ๊ด€ ๋ถ„์„์—์„œ OC๊ฐ€ DTTv์™€ ๊ฐ€์žฅ ๋†’์€ ์ƒ๊ด€์„ฑ์„ ๋ณด์˜€๋‹ค(PM2.5: r=0.873, PM1.0: r=0.786). ๋‹ค์ค‘ ํšŒ๊ท€๋ถ„์„์—์„œ ์ด์ฐจ ์งˆ์‚ฐ์—ผ๊ณผ ์ƒ๋ฌผ์„ฑ์—ฐ์†Œ๋Š” PM2.5์™€ PM1.0์—์„œ ๋ชจ๋‘ DTTv๋ฅผ ์„ค๋ช…ํ•˜๋Š” ๋ณ€์ˆ˜๋กœ ์„ ํƒ๋˜์—ˆ๋‹ค. ์ด ๊ฒฐ๊ณผ์—์„œ ์ƒ๋ฌผ์„ฑ์—ฐ์†Œ๋Š” ์‚ฐํ™” ์ž ์žฌ๋ ฅ๊ณผ ๊ด€๋ จ๋œ ์ค‘์š”ํ•œ ์˜ค์—ผ์›์ด์—ˆ๊ณ  ์ด์ฐจ ์งˆ์‚ฐ์—ผ์€ ์ด์ฐจ ์ƒ์„ฑ ๊ณผ์ •์˜ ์˜ํ–ฅ์„ ๋‚˜ํƒ€๋ƒˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์˜ค์—ผ์›๊ณผ ์‚ฐํ™” ์ž ์žฌ๋ ฅ์˜ ํŠน์„ฑ์„ ํŒŒ์•…ํ•˜๊ธฐ ์œ„ํ•œ ์ง€์†์ ์ธ PM1.0 ์—ฐ๊ตฌ์˜ ํ•„์š”์„ฑ์„ ๋ณด์—ฌ์ฃผ์—ˆ๊ณ , ์„œ์šธ์—์„œ ์ด์ฐจ ์ƒ์„ฑ๊ณผ ์ƒ๋ฌผ์„ฑ์—ฐ์†Œ ์˜ค์—ผ์› ๊ด€๋ฆฌ์˜ ํ•„์š”์„ฑ์„ ๋‚˜ํƒ€๋ƒˆ๋‹ค.1. Introduction 1 2. Method 3 3. Results and Discussion 10 4. Summary and Conclusion 45 References 49 Supplementary 60 Abstract in Korean 67์„

    ์œ ๋Ÿฝํ˜• ๋ผ์ง€ ์ƒ์‹๊ธฐ ํ˜ธํก๊ธฐ ์ฆํ›„๊ตฐ ๋ฐ”์ด๋Ÿฌ์Šค ๋ฐฑ์‹ ์˜ ์ž„์ƒํ•™์ , ๋ฐ”์ด๋Ÿฌ์Šคํ•™์ , ๋ฉด์—ญํ•™์ , ๋ณ‘๋ฆฌํ•™์  ๋ถ„์„์„ ํ†ตํ•œ ํ‰๊ฐ€

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ˆ˜์˜๊ณผ๋Œ€ํ•™ ์ˆ˜์˜ํ•™๊ณผ ์ˆ˜์˜๋ณ‘์ธ์ƒ๋ฌผํ•™๋ฐ์˜ˆ๋ฐฉ์ˆ˜์˜ํ•™์ „๊ณต, 2016. 2. ์ฑ„์ฐฌํฌ.The Porcine Reproductive and Respiratory Syndrome Virus was first recognized in the early 1900s as a cause of reproductive losses in sow and severe respiratory disorders in growing pigs. PRRSV is recognized by 2 genotypes: Type 1 (European genotype) and Type 2 (North American genotype). Although these two PRRSV genotypes produce the same disease symptoms, they are significantly different antigens. Until late 2000s, Type 2 PRRSV was the main genotype in Korea. After the first detection of Type 1 PRRSV in 2005, the proportion of Type 1 PRRSV has continuously increased. Until 2013, Type 2 PRRSV vaccines were the only vaccines available in Korea. However, the modified live virus (MLV) vaccines for Type 1 PRRSV became available in 2014. Therefore, in order to evaluate the efficacies of commercial vaccines, it is reasonable to measure the cell-mediated immunity, humoral immunity, pathological and clinical responses against these two types of PRRSV. A study was performed to compare the efficacies of two commercial Type 1 PRRSV MLV vaccines against heterologous Type 1 and Type 2 PRRSV challenge in growing pigs and boars. For the study of growing pigs, a total of 112 pigs were randomly divided into 7 groups4 vaccinated and challenged groups, 2 non-vaccinated and challenged groups, and a negative control group. According to this study, commercial Type 1 PRRSV MLV vaccines could reduce the level of viremia against Type 1 PRRSV, but it could not reduce the level of viremia against Type 2 PRRSV. Low level of IL-10 and high level of Type 1 PRRSV-specific IFN-ฮณ-SC were both detected within Type 1 PRRSV challenged groups, whereas high level of IL-10 and low number of Type 2 PRRSV-specific IFN-ฮณ-SC were detected in vaccinated pigs within Type 2 PRRSV challenged groups. Type 1 PRRSV vaccines effectively reduced the lung lesions and Type 1 PRRSV nucleic acids in Type 1 PRRSV challenged groups. However, both the lung lesions and Type 2 PRRSV nucleic acids did not reduce in Type 2 PRRSV challenged groups. Accordingly, the Type 1 PRRSV commercial vaccines can provide partial protections against Type 1 PRRSV challenge but cannot provide effective protection against heterologous Type 2 PRRSV challenge. For the study of boars, a total of 35 purebred Landrace boars were randomly divided into 7 groups4 vaccinated and challenged groups, 2 non-vaccinated and challenged groups, and a negative control group. In this study, the clinical symptoms were reduced by Type 1 PRRSV MLV vaccines after challenging with Type 1 and Type 2 PRRSV. Seminal shedding of PRRSV was independent of viremia. The reduction of Type 1 PRRSV seminal shedding coincided with the appearance of Type 1 PRRSV-specific IFN-ฮณ-SC in Type 1 PRRSV-challenged groups. The frequencies of Type 1 PRRSV-specific IFN-ฮณ-SC induced by Type 1 PRRSV vaccine were relatively high compared to Type 2 PRRSV-specific IFN-ฮณ-SC induced by the same vaccine. The PRRSV MLV vaccine can provide a more effective protection against the same genotype than a different genotype in terms of seminal shedding of PRRSV in boars.GENERAL INTRODUCTION 1 LITERATURE REVIEW 4 1. Etiology 4 2. Clinical sign and Pathogenesis 6 3. Economic loss 8 4. Control 9 5. Vaccine and Immune responses 10 6. References 13 PART I. Comparison of Two Commercial Type 1 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Modified Live Vaccines against Heterologous Type 1 and Type 2 PRRSV Challenge in Growing Pigs 23 Abstract 24 Introduction 25 Materials and methods 27 Results 35 Discussion 47 References 51 PART II. Two Commercial Type 1 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Modified Live Vaccines Reduce Seminal Shedding of Type 1 PRRSV but not Type 2 PRRSV in Infected Boars 57 Abstract 58 Introduction 59 Materials and methods 61 Results 69 Discussion 79 References 81 GENERAL CONCLUSION 88 ABSTRACT IN KOREAN 90Docto

    ์ž์™ธ์„  ๊ด‘๋ถ„ํ•ด, ์—ผ์†Œ ์ฒ˜๋ฆฌ ๋ฐ ์ž์™ธ์„ -์—ผ์†Œ์ฒ˜๋ฆฌ๋ฅผ ํ†ตํ•œ ์กฐ๋ฅ˜๊ธฐ์ธ ์œ ๊ธฐ๋ฌผ์งˆ ฮฒ-cyclocitral๊ณผ ฮฒ-ionone์˜ ๋ถ„ํ•ด ๊ธฐ์ž‘ ๊ทœ๋ช…์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋ณด๊ฑด๋Œ€ํ•™์› ํ™˜๊ฒฝ๋ณด๊ฑดํ•™๊ณผ, 2017. 8. ์กฐ๊ฒฝ๋•.Algal taste and odor compound has become one of emerging concerns affecting drinking water quality. Among several algal odorants, ฮฒ-cyclocitral and ฮฒ-ionone are the oxidation byproducts of ฮฒ-carotene existing in algae cells. Several AOPs such as UV-H2O2 and ozonation had adapted for algal odorants. However, degradation kinetic and byproducts of ฮฒ-cyclocitral and ฮฒ-ionone under UV-chlorination is not studied much. For these reasons, two odorants were treated by UV photolysis, chlorination and UV-chlorination and the degradation kinetic and byproducts of three treatment were examined. ฮฒ-ionone showed faster degradation under all reactions compared to ฮฒ-cyclocitral. The double bond on carbon chain of ฮฒ-ionone is a reactive site for chlorination, hydroxyl radical attack and UV induced isomerization. Among three reaction, UV-chlorination was the most effective treatment due to generation of hydroxyl radical by reaction between UV and chlorine. Alkaline pH was not favored for UV-chlorination because hypochlorite is dominant form of active chlorine at alkaline pH and it is able to consume hydroxyl radical and it is inefficient for generating hydroxyl radical. During UV-chlorination reaction, only chloroform was generated for byproducts of reaction among regulated VOCs. It is due to methyl ketone functional group of the parent compounds. UV-chlorination had enhanced the formation of chloroform compared to chlorination. However increased amount of chloroform is very little compared to guideline limit. By GC-MS scanning, several intermediates of ฮฒ-ionone under UV-chlorination were observed including ฮฒ-cyclocitral. These compounds were formed by UV isomerization, hydroxyl radical attack and bond scission reaction.Abstract i List of Figures ii List of Tables iii 1. Introduction 1 1.1. Background 1 1.2. Objectives 4 2. Material and Methods 4 2.1. Chemicals 4 2.2. Experimental setup 5 2.3. Analysis 6 3. Results 8 3.1. Degradation kinetic of ฮฒ-cyclocitral and ฮฒ-ionone under UV photolysis, chlorination and UV-chlorination 8 3.2. pH dependency of degradation kinetic of ฮฒ-cyclocitral and ฮฒ-ionone under UV-chlorination 11 3.3. Degradation byproducts of ฮฒ-cyclocitral and ฮฒ-ionone under UV photolysis, chlorination and UV-chlorination 12 3.4. Suggested degradation pathway of ฮฒ-cyclocitral and ฮฒ-ionone under UV photolysis, chlorination and UV-chlorination 14 4. Conclusions 19 References 21Maste

    2,3-Butanediol ์ƒ์‚ฐ์„ ์œ„ํ•œ Raoultella ornithinolytica B6์˜ ๋Œ€์‚ฌ๊ณตํ•™์  ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๋†์—…์ƒ๋ฌผ๊ณตํ•™์ „๊ณต, 2017. 2. ์„œ์ง„ํ˜ธ.์„์œ  ๊ณ ๊ฐˆ๊ณผ ์ด๋กœ ์ธํ•œ ์„์œ  ์‚ฐ์—…์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์ƒ์‚ฐํ•˜๋Š” ํ™”ํ•™๋ฌผ์˜ ๊ฒฝ์ œ์„ฑ, ๊ทธ๋ฆฌ๊ณ  ํ™˜๊ฒฝ ๋ฌธ์ œ์— ๋Œ€ํ•œ ๊ด€์‹ฌ์ด ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ์ƒ๋ฌผํ•™์  ๋ฐฉ๋ฒ•์„ ํ†ตํ•œ ์œ ์šฉ๋ฌผ์งˆ ์ƒ์‚ฐ์— ๋Œ€ํ•œ ๊ด€์‹ฌ์€ ๋‚ ๋กœ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ๊ทธ ์ค‘์—์„œ๋„ 2,3-butnaediol (2,3-BD)์€ ์ƒ๋ฌผ๊ณตํ•™์  ๋ฐฉ๋ฒ•์„ ์ด์šฉํ•ด ์ƒ์‚ฐ์ด ๊ฐ€๋Šฅํ•˜๋ฉฐ ๊ทธ ํ™œ์šฉ๋„๊ฐ€ ๋†’์•„ ์ƒ์‚ฐ ๊ฐ€๋Šฅํ•œ ๋ฏธ์ƒ๋ฌผ๊ณผ ๋ฐœํšจ ๊ณต์ •์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํžˆ ์ง„ํ–‰๋˜์–ด ์™”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋…๋ณด์ ์œผ๋กœ ๋†’์€ ์ƒ์‚ฐ์„ฑ์„ ๋ณด์ด๋Š” ๋ฏธ์ƒ๋ฌผ์€ Klebsiella ์ข…์— ์†ํ•˜๋Š” ๋ฐ•ํ…Œ๋ฆฌ์•„๋กœ ํ•ด๋‹น ๋ฏธ์ƒ๋ฌผ๋“ค์€ ๋ณ‘์›์„ฑ์„ ๊ฐ–๊ณ  ์žˆ์–ด ์‚ฐ์—…์  ์ธก๋ฉด์—์„œ ์•ˆ์ „์„ฑ ๋ฌธ์ œ๋ฅผ ๊ฐ–๊ณ  ์žˆ๋‹ค. ํ•œํŽธ, ๋ฐ”์ด์˜ค๋””์ ค ์ƒ์‚ฐ ์ฆ๊ฐ€์— ๋”ฐ๋ผ ๋ถ€์‚ฐ๋ฌผ๋กœ ์ƒ์‚ฐ๋˜๋Š” ๊ธ€๋ฆฌ์„ธ๋กค์˜ ๊ฐ€๊ฒฉ์ด ๊พธ์ค€ํžˆ ๋‚ฎ์•„์ง€๊ณ  ์žˆ์Œ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ๊ณ ์ˆ˜์œจ์˜ 2,3-BD ์ƒ์‚ฐ์„ ์œ„ํ•œ ํƒ„์†Œ์›์œผ๋กœ ๊ธ€๋ฆฌ์„ธ๋กค์„ ์ฑ„ํƒํ•˜์—ฌ ์ง„ํ–‰ํ•œ ์—ฐ๊ตฌ๋Š” ๋‹น๋ฅ˜๋ฅผ ํ™œ์šฉํ•œ ์—ฐ๊ตฌ์— ๋น„ํ•ด ์ƒ๋Œ€์ ์œผ๋กœ ๋ฏธ์ง„ํ•˜๋‹ค. ์ด์— ๋”ฐ๋ผ ๋ณธ ์—ฐ๊ตฌ๋Š” ๋‹น ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๊ธ€๋ฆฌ์„ธ๋กค์„ ํƒ„์†Œ์›์œผ๋กœ ์ด์šฉํ•˜์—ฌ ํšจ์œจ์ ์ธ 2,3-BD์˜ ์ƒ์‚ฐ์ด ๊ฐ€๋Šฅํ•œ ์ƒˆ๋กœ์šด ๋ฏธ์ƒ๋ฌผ์„ ์ œ์‹œํ•จ์œผ๋กœ์จ 2,3-BD์˜ ์‚ฐ์—…์  ์ƒ์‚ฐ์— ์ ์šฉ ๊ฐ€๋Šฅํ•œ ํƒ„์†Œ์›์˜ ๋‹ค์–‘ํ™” ๋ฐ ๊ท ์ฃผ์˜ ๋‹ค์–‘ํ™”๋ฅผ ๋ชฉ์ ์œผ๋กœ ํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์œ ๋ฅ˜ ์˜ค์—ผ ํ† ์–‘ ์ƒ˜ํ”Œ์—์„œ ๋ฏธ์ƒ๋ฌผ์„ ๋ถ„๋ฆฌ, ๋™์ •ํ•˜์˜€์œผ๋ฉฐ, Raoultella ornithinolytica B6 ๋ผ ๋ช…๋ช…ํ•˜์˜€๋‹ค. ๋ณธ ๊ท ์ฃผ๋Š” ๋‹ค์–‘ํ•œ 6ํƒ„๋‹น (ํฌ๋„๋‹น, ๊ณผ๋‹น, ๊ฐˆ๋ฝํ† ์Šค)๊ณผ 5ํƒ„๋‹น์ธ ์ž์ผ๋กœ์Šค, ์ด๋‹น๋ฅ˜์ธ ์ˆ˜ํฌ๋กœ์Šค, ๊ทธ๋ฆฌ๊ณ  ๊ธ€๋ฆฌ์„ธ๋กค์„ ํ™œ์šฉํ•˜์—ฌ 2,3-BD๋ฅผ ์ฃผ์š” ์ƒ์‚ฐ๋ฌผ๋กœ ์ƒ์‚ฐํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ํ™•์ธ ํ•˜์˜€๋‹ค. ์ด์— R. ornithinolytica B6 ๊ท ์ฃผ๋ฅผ ์ด์šฉํ•œ 2,3-BD ์ƒ์‚ฐ์„ฑ ํ–ฅ์ƒ์„ ์œ„ํ•ด ๋จผ์ € ์ตœ์  ๋ฐœํšจ์กฐ๊ฑด์„ ํƒ์ƒ‰ํ•˜์˜€๋‹ค. ๋‹น๋ฅ˜ ์ค‘์—์„œ๋Š” ๊ฐ€์žฅ ๋†’์€ ์ˆ˜์ค€์œผ๋กœ 2,3-BD๋ฅผ ์ƒ์‚ฐํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ๊ธฐ์งˆ์ธ ํฌ๋„๋‹น์„ ์ฃผ์š” ๊ธฐ์งˆ๋กœ ํ•˜์—ฌ ์ตœ์  ๋ฐฐ์–‘ ์˜จ๋„๋ฅผ ํ™•์ธ ํ•˜๊ณ , ์œ ๊ฐ€์‹ ํšŒ๋ถ„๋ฐฐ์–‘ ์กฐ๊ฑด์„ ํ™•๋ฆฝํ•˜์˜€๋‹ค. ๋จผ์ € pH ์กฐ๊ฑด์„ ํ™•๋ฆฝํ•˜์˜€๋Š”๋ฐ, ์ดˆ๊ธฐ pH 7.0 ์—์„œ ๋ฐฐ์–‘ํ•˜์—ฌ 5.5์—์„œ ์œ ์ง€ํ•˜๋Š” ์ด๋‹จ๊ณ„ ์กฐ์ ˆ ์ „๋žต์„ ์‚ฌ์šฉํ•˜์—ฌ 2,3-BD ์ƒ์‚ฐ์„ฑ์„ ํ–ฅ์ƒ์‹œ์ผฐ๋‹ค. ๊ทธ ๋‹ค์Œ์œผ๋กœ๋Š” ๊ต๋ฐ˜์†๋„๋ฅผ ์กฐ์ ˆํ•˜์—ฌ ๊ณต๊ธฐ๊ณต๊ธ‰๋Ÿ‰์„ ์กฐ์ ˆํ•˜์˜€๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ 400 rpm์˜ ์†๋„๋กœ ๊ต๋ฐ˜ํ•  ๋•Œ 2,3-BD (68.3 g/L)๋ฅผ ๊ฐ€์žฅ ๋†’๊ฒŒ ์ƒ์‚ฐํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋‹ค์Œ ๋‹จ๊ณ„๋กœ 2,3-BD ์ƒ์‚ฐ๋Ÿ‰์„ ๋†’์ด๊ธฐ ์œ„ํ•ด ๋Œ€์‚ฌ๊ณตํ•™์  ๋ฐฉ๋ฒ•์„ ํ†ตํ•œ ๊ท ์ฃผ ๊ฐœ๋ฐœ์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ํ”ผ๋ฃจ๋นˆ์‚ฐ์˜ 2,3-BD๋กœ์˜ ์ „ํ™˜์— ๊ด€์—ฌํ•˜๋Š” ์„ธ ๊ฐœ ์œ ์ „์ž (budA, budB, budC)๊ฐ€ ๊ณผ๋ฐœํ˜„ ๋œ ๊ท ์ฃผ R. ornithinolytica B6(pBbA5c-budABC)๋Š” ์•ž์„œ ํ™•๋ฆฝํ•œ ์ตœ์  ๋ฐœํšจ์กฐ๊ฑด ํ•˜์— ์ตœ์ข…์ ์œผ๋กœ 112.5 g/L์˜ 2,3-BD๋ฅผ ์ƒ์‚ฐํ•˜์—ฌ ๊ธฐ์กด์— ์•Œ๋ ค์ง„ 2,3-BD ์ƒ์‚ฐ ๊ท ์ฃผ์™€ ๊ฒฌ์ฃผ์–ด ์†์ƒ‰์ด ์—†์Œ์„ ์ฆ๋ช…ํ•˜์˜€๋‹ค. ํ•œํŽธ, R. ornithinolytica B6 ์˜ ์œ ์ „์ฒด ๋ถ„์„์„ ํ†ตํ•ด ๊ธ€๋ฆฌ์„ธ๋กค์„ ๊ธฐ์งˆ๋กœ ๊ณต๊ธ‰ ์‹œ, 2,3-BD ๋ถ„๋ฆฌ ์ •์ œ์— ๋ฌธ์ œ๊ฐ€ ๋˜๋Š” ๋ถ€์‚ฐ๋ฌผ์ธ 1,3-propanediol (1,3-PD)์„ ์ƒ์‚ฐํ•˜๋Š” ๋Œ€์‚ฌ๊ฒฝ๋กœ๋ฅผ ๊ฐ–๊ณ  ์žˆ์ง€ ์•Š์€ ๊ฒƒ์ด ํ™•์ธ๋˜์—ˆ๋‹ค. ์ด์— ๋”ฐ๋ผ ๋†’์€ ๊ฒฝ์ œ์„ฑ์„ ๊ฐ€์ง„ ์žฌ์ƒ ๊ฐ€๋Šฅํ•œ ์ž์›์ธ ํ ๊ธ€๋ฆฌ์„ธ๋กค์„ ๊ธฐ์งˆ๋กœ ๊ณต๊ธ‰ํ•˜์—ฌ 2,3-BD๋ฅผ ์ƒ์‚ฐํ•˜๊ณ ์ž ํ•˜๋Š” ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ์ „์ฒด์ ์ธ ์—ฐ๊ตฌ์˜ ํ๋ฆ„์€ ๋‹น์„ ๊ณต๊ธ‰ํ–ˆ์„ ๋•Œ์™€ ๊ฐ™์ด ์ตœ์  ๋ฐฐ์–‘ ์˜จ๋„๋ฅผ ํ™•์ธํ•˜๊ณ  ์œ ๊ฐ€์‹ ํšŒ๋ถ„๋ฐฐ์–‘ ์กฐ๊ฑด์„ pH ์กฐ์ ˆ๊ณผ ๊ณต๊ธฐ ๊ณต๊ธ‰ ์ธก๋ฉด์—์„œ ํ™•๋ฆฝํ•˜์˜€๋Š”๋ฐ, ๋‹น์„ ๊ณต๊ธ‰ํ–ˆ์„ ๋•Œ์™€ ๋‹ค๋ฅธ ์ ์€ pH ์กฐ์ ˆ ์ „๋žต์œผ๋กœ pH 5.5 ์—์„œ ๊ณ ์ •ํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๊ณ  pH 5.5๋ฅผ ํ•˜ํ•œ๊ฐ’์œผ๋กœ ์„ค์ •ํ•˜์—ฌ 5.5 ์ด์ƒ์—์„œ์˜ pH ๋ณ€๋™์„ ํ—ˆ์šฉํ•˜์˜€๋‹ค. ์ด๋Š” ์ธ์œ„์ ์ธ pH ์˜ ๋ณ€ํ™”๊ฐ€ 2,3-BD์˜ ์ƒ์‚ฐ์„ฑ ํ–ฅ์ƒ์— ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค๋Š” ๊ธฐ์กด์˜ ์—ฐ๊ตฌ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ํ•˜์ง€๋งŒ, ํ•ด๋‹น ์—ฐ๊ตฌ์—์„œ๋Š” ์ธ์œ„์ ์œผ๋กœ ์ผ์ • ์‹œ๊ฐ„ ๊ฐ„๊ฒฉ์„ ๋‘๊ณ  ์ผ์ •ํ•œ ํญ์œผ๋กœ pH๋ฅผ ์˜ฌ๋ ค์„œ pH์— ๋งฅ์„ ์œ ๋ฐœํ•˜์˜€๋‹ค๋ฉด, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํ•˜ํ•œ์„ ์˜ ์„ค์ •๋งŒ์œผ๋กœ ์ž๋™์ ์œผ๋กœ pH์˜ ํŒŒ๋™์ด ์œ ๋ฐœ๋˜์—ˆ๋‹ค๋Š” ์ ์—์„œ ๊ธฐ์กด ์—ฐ๊ตฌ์™€ ์ฐจ๋ณ„ํ™” ๋œ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ด๋Ÿฌํ•œ pH ํŒŒ๋™์ด 1์ฐจ ๋Œ€์‚ฌ์‚ฐ๋ฌผ๋กœ ์ƒ์‚ฐ๋˜๋Š” ์ –์‚ฐ์— ์˜ํ•ด ์œ ๋ฐœ ๋จ์„ lactate dehydrogenase ์œ ์ „์ž์˜ ์‚ญ์ œ๋ฅผ ํ†ตํ•ด ๊ทœ๋ช…ํ•˜์˜€๋‹ค. ์ด ๊ณผ์ •์„ ํ†ตํ•ด ํ™•๋ฆฝํ•œ ๋ฐœํšจ ์กฐ๊ฑด์—์„œ, budABC ๊ณผ๋ฐœํ˜„ ๊ท ์ฃผ R. ornithinolytica B6(pUC18CM-budABC)๋ฅผ ์ด์šฉํ•œ ๊ธ€๋ฆฌ์„ธ๋กค ๋ฐœํšจ๊ฐ€ ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค. ์ˆœ์ˆ˜ ๊ธ€๋ฆฌ์„ธ๋กค์„ ๊ธฐ์งˆ๋กœ ํ•˜์—ฌ 89.5 g/L ์˜ 2,3-BD๋ฅผ ์ƒ์‚ฐํ•˜์˜€์œผ๋ฉฐ, ํ ๊ธ€๋ฆฌ์„ธ๋กค์„ ๊ธฐ์งˆ๋กœ ํ•˜์—ฌ 78.1 g/L๋ฅผ ์ƒ์‚ฐํ•˜์˜€๋‹ค. ์ƒ์ˆ ํ•œ ๋ฐ”์™€ ๊ฐ™์ด ๋ณธ ๊ท ์ฃผ๋Š” 1,3-PD๋ฅผ ์ƒ์‚ฐํ•˜์ง€ ์•Š์œผ๋ฏ€๋กœ ๊ธ€๋ฆฌ์„ธ๋กค์„ ํƒ„์†Œ์›์œผ๋กœ ํ•˜์—ฌ 2,3-BD๋ฅผ ์ƒ์‚ฐํ•˜๋Š” ๊ฒฝ์šฐ, ๊ธฐ์งˆ์˜ ๊ฒฝ์ œ์„ฑ๋ฟ ์•„๋‹ˆ๋ผ ๋ถ„๋ฆฌ์ •์ œ ๊ณต์ •์— ์žˆ์–ด์„œ์˜ ๊ฒฝ์ œ์„ฑ๊นŒ์ง€ ํ™•๋ณดํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ๊ธฐ์กด์— ๋ฐœํ‘œ๋˜์—ˆ๋˜ ๊ท ์ฃผ์™€ ๋‹ค๋ฅด๊ฒŒ ์ƒ๋ฌผ์•ˆ์ „๋„ 1์˜ ๋ฏธ์ƒ๋ฌผ์ธ Raoultella ์— ์†ํ•˜๋Š” ๊ท ์ฃผ๋ฅผ 2,3-BD์˜ ์‚ฐ์—…์  ์ƒ์‚ฐ์„ ์œ„ํ•œ ํ›„๋ณด ๊ท ์ฃผ๋กœ ์ œ์‹œํ•จ์œผ๋กœ์จ, 2,3-BD ์ƒ์‚ฐ ๊ท ์ฃผ ๋ฒ”์œ„๋ฅผ ํ™•์žฅ์‹œ์ผฐ์œผ๋ฉฐ, ์ตœ์ดˆ๋กœ R. ornithinolytica ์˜ ๋Œ€์‚ฌ๊ณตํ•™ ๋ฐ ๋ฐœํšจ ์กฐ๊ฑด์„ ํ™•๋ฆฝํ•˜์˜€์Œ์— ๊ทธ ์˜์˜๊ฐ€ ์žˆ๋‹ค.2,3-Butanediol (2,3-BD) is a platform chemical with wide ranges of industrial applications. Numerous studies have been reported with regard to metabolic engineering of microorganisms able to produce 2,3-BD and optimization of fermentation processes in an effort to improve 2,3-BD production. To overcome limitation in industrial applications caused by the pathogenicity of previously reported 2,3-BD producers such as Klebsiella pneumoniae and K. oxytoca, a non-pathogenic 2,3-BD producing bacterium, Raoultella ornithinolytica B6 was isolated from a soil sample of Baegun Mountain in Korea. The B6 strain produces 2,3-BD as a main product by using glucose, galactose, fructose, xylose, sucrose and glycerol as carbon sources. Notable physiological characteristics of R. ornithinolytica B6 were observed. Cell growth and 2,3-BD production were higher at 25 oC than those at 30 oC. The B6 strain has no gene encoding glycerol dehydratase, which converts glycerol to 3-hydroxypropionaldehyde, an intermediate of 1,3-propanediol (1,3-PD) biosynthetic pathway, hence the B6 strain cannot produce 1,3-PD, which may cause difficulty in 2,3-BD purification processes. 2,3-BD production by R. ornithinolytica B6 was improved by metabolic engineering and optimizing fermentation conditions including pH and aeration. First, production of 2,3-BD from glucose was conducted. For optimizing fermentation conditions, pH was controlled by the two-stagesinitial pH was set at 7.0 and then the acidity was maintained at pH 5.5 after naturally decreasing to pH 5.5. As a result, 2,3-BD production was increased by a 1.5-fold compared with no pH-control. Optimum agitation speed for 2,3-BD production was also investigated for 300, 400 and 500 rpm. The highest concentration of 2,3-BD (68.3 g/L) was obtained at 400 rpm. Further improvement of 2,3-BD production in titer (112.2 g/L) and productivity (1.35 g/L/h) was achieved by overexpressing the homologous budABC genes directly involved in the conversion of pyruvate to 2,3-BD. Second, fermentation conditions for using glycerol as a carbon source were optimized for efficient 2,3-BD production. By evaluating the effects of agitation speed, and pH control strategy, optimum fermentation conditions for 2,3-BD production were found to be 400 rpm, and pH control with lower limit of 5.5. Notably, significant pH fluctuations which positively affected 2,3-BD production were generated by simple control of the lower pH limit at 5.5. In a fed-batch fermentation under those conditions, R. ornithinolytica B6 produced 79.3 g/L 2,3-BD, and a further enhancement of 2,3-BD production (89.5 g/L) was achieved by overexpressing the budABC genes. When pretreated crude glycerol was used as a sole carbon source, the engineered R. ornithinolytica B6 produced 78.1 g/L 2,3-BD with 0.42 g/g of yield and 0.62 g/L/h of productivity. The 2,3-BD titer, yield and productivity were the highest values among 1,3-PD synthesis-deficient 2,3-BD producers. This study demonstrates R. ornithinolytica B6 as a promising 2,3-BD producer, which can produce 2,3-BD at high concentrations from glucose and glycerol.Chapter1 Literature review 1 1.1. 2,3-Butanediol 2 1.2. Biological production of 2,3-butanediol 3 1.3. Glycerol as a carbon source for microorganisms 11 1.4. The Raoultella genus 13 1.5. Objectives of the dissertation 14 Chapter2 Isolation and characterization of a 2,3-butanediol-producing bacterium Raoultella ornithinolytica B6 from a soil sample 15 2.1. Summary 16 2.2. Introduction 17 2.3. Materials and methods 19 2.3.1. Media 19 2.3.2. Isolation and Identification 19 2.3.3. Flask culture 20 2.3.4. Analytical procedures 20 2.4. Results 22 2.4.1. Isolation and identification 22 2.4.2. Effects of temperature on 2,3-BD production 24 2.4.3. Sugar utilization 27 2.5 Discussion 29 Chapter3 High production of 2,3-butanediol production by newly isolated Raoultella ornithinolytica B6 through optimization of fermentation conditions and metabolic engineering 30 3.1. Summary 31 3.2. Introduction 32 3.3. Materials and methods 34 3.3.1. Microorganism and media 34 3.3.2. Fed-batch fermentation 34 3.3.3. Acetoin reductase (AR) activity assay 35 3.3.4. Overexpression of budABC 36 3.3.5. SDS-PAGE for confirmation of budABC overexpression 38 3.3.6. Analytical procedures 38 3.4. Results 40 3.4.1. Effects of pH-control on 2,3-BD production in fed-batch fermentation 40 3.4.2. Effects of agitation speed on 2,3-BD production in fed-batch fermentation 42 3.4.3. Overexpression of budA, budB and budC genes 45 3.5. Discussion 50 Chapter4 Efficient production of 2,3-butanediol from glycerol by 1,3-propanediol synthesis-deficient Raoultella ornithinolytica B6 53 4.1. Summary 54 4.2. Introduction 55 4.3. Materials and methods 58 4.3.1. Microorganism and media 58 4.3.2. Pretreatment of crude glycerol 58 4.3.3. Flask culture 60 4.3.4. Fed-batch fermentation 60 4.3.5. Overexpression of budABC 61 4.3.6. Deletion of ldhA gene 63 4.3.7. Analytical procedures 64 4.4. Results 65 4.4.1. Selection of R. ornithinolytica B6 for 2,3-BD production from glycerol 65 4.4.2. Effect of agitation speed on 2,3-BD production 65 4.4.3. Effect of pH control on 2,3-BD production 69 4.4.4. Effect of complex nitrogen sources on 2,3-BD production 73 4.4.5. Correlation between lactic acid production and 2,3-BD production 76 4.4.6. Enhancement of 2,3-BD production by overexpression of the budABC genes 79 4.4.7. Crude glycerol utilization for 2,3-BD production with the budABC overexpression mutant 82 4.5. Discussion 88 Conclusions 92 References 95 Appendix 109 ๊ตญ๋ฌธ์ดˆ๋ก 112Docto

    Noise Robust Dialogue Act Recognition for Task-oriented Dialogues

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2015. 8. ์ด์ƒ๊ตฌ.๋Œ€ํ™” ์‹œ์Šคํ…œ๊ณผ ์ด๋ฉ”์ผ, ๊ฒŒ์‹œ๊ธ€ ์š”์•ฝ ์‹œ์Šคํ…œ ๊ตฌ์ถ•์— ์žˆ์–ด ๋Œ€ํ™” ์˜๋„ ๋ถ„๋ฅ˜๋Š” ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•œ๋‹ค. ์ด๋Š” ๊ฐ๊ฐ์˜ ์‹œ์Šคํ…œ๋“ค์ด ๋ฐœํ™”, ๋ฉ”์ผ, ๊ฒŒ์‹œ๊ธ€ ํ˜•ํƒœ์˜ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•˜์—ฌ ๋Œ€ํ™” ์˜๋„๋ฅผ ๋ถ„๋ฅ˜ํ•˜๊ณ  ์ด ์ •๋ณด๋ฅผ ํ•˜์œ„ ์ž‘์—…์˜ ์ž…๋ ฅ์œผ๋กœ ์‚ฌ์šฉํ•˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๊ทธ๋ž˜์„œ ๋Œ€ํ™” ์˜๋„ ๋ถ„๋ฅ˜ ์„ฑ๋Šฅ์ด ํ•ด๋‹น ์‹œ์Šคํ…œ ์˜ ์ „์ฒด ์„ฑ๋Šฅ์— ํฌ๊ฒŒ ์˜ํ–ฅ์„ ์ฃผ๊ธฐ ๋•Œ๋ฌธ์— ์„ฑ๋Šฅ ํ–ฅ์ƒ ์ธก๋ฉด์— ์žˆ์–ด ์ค‘์š”ํ•˜๋‹ค. ๋Œ€ํ™” ์˜๋„ ๋ถ„๋ฅ˜๋Š” ๋Œ€ํ™” ๋‚ด ๋ฐœํ™”์— ๋Œ€ํ™” ์˜๋„๋ฅผ ํ• ๋‹นํ•˜๋Š” ๋ฌธ์ œ์ด๋‹ค. ํŠนํžˆ ๋Œ€ํ™” ์‹œ์Šคํ…œ์—์„œ๋Š” ์Œ์„ฑ ์ธ์‹ ์—๋Ÿฌ๊ฐ€ ์กด์žฌํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์—๋Ÿฌ์— ๊ฐ•์ธํ•œ ๋Œ€ํ™” ์˜๋„ ๋ถ„๋ฅ˜ ๋ชจ๋ธ์ด ํ•„์š”ํ•˜๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋‘ ๋ช…์˜ ์‚ฌ๋žŒ์ด ํŠน์ • ๋ชฉ์ ์„ ๊ฐ€์ง€๊ณ  ์ง„ํ–‰ํ•˜๋Š” ๊ณผ์ œ ์ง€ํ–ฅํ˜• ๋Œ€ํ™”๋ผ๋Š” ์ƒํ™ฉ์—์„œ ๋ฐœํ™”, ํ™”์ž, ๋Œ€ํ™” ์˜๋„๋ฅผ ๊ณ ๋ คํ•˜์—ฌ ๋Œ€ํ™” ๊ตฌ์กฐ๋ฅผ ๋ชจ์‚ฌํ•˜๋Š” ์ƒ์„ฑ๋ชจ๋ธ์„ ๋งŒ๋“ค์–ด ๋…ธ์ด์ฆˆ ๋ฐ์ดํ„ฐ์— ๋Œ€์‘ํ•˜์˜€๋‹ค. ์ด ๋ชจ๋ธ์˜ ๊ธฐ๋ฐ˜์ด ๋˜๋Š” ๊ฐ€์ •์€ ํ™”์ž๋Š” ์–ด๋– ํ•œ ํ–‰์œ„๋ฅผ ์ˆ˜ํ–‰ํ•˜๊ณ ์ž ํ•˜๋Š” ๋ชฉ์ ์„ ๊ฐ€์ง€๊ณ , ๊ทธ ๋ชฉ์ ์— ๋งž๋Š” ์ ์ ˆํ•œ ์–ดํœ˜ ์ง‘ํ•ฉ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ƒ๋Œ€๋ฐฉ์—๊ฒŒ ๋ง์„ ํ•œ๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ์ฆ‰ ์ œ์•ˆํ•œ ๋ชจ๋ธ์€ ์ด๋Ÿฌํ•œ ๊ฐ€์ •์„ ๊ณ ๋ คํ•˜์—ฌ ๋งˆ๋ฅด์ฝ”ํ”„ ๋ชจ๋ธ์„ ๊ฐœ์„ ํ•˜์˜€๋‹ค. ๊ณผ์ œ ์ง€ํ–ฅํ˜• ๋ฐ์ดํ„ฐ์ธ HCRC map task, live chat, SACTI-1 ๋ง๋ญ‰์น˜๋ฅผ ์ด์šฉํ•œ ์‹คํ—˜์„ ํ†ตํ•ด ์ œ์•ˆํ•œ ๋ชจ๋ธ์ด ๊ธฐ์กด ๋งˆ๋ฅด์ฝ”ํ”„ ๋ชจ๋ธ์— ๋น„ํ•˜์—ฌ ๋” ๋‚˜์€ ์„ฑ๋Šฅ์„ ๋ณด์ด๊ณ , ํ˜„์žฌ๊นŒ์ง€๋„ ๋Œ€ํ™” ์˜๋„ ๋ถ„๋ฅ˜ ์„ฑ๋Šฅ์ด ๋†’์€ SVM-HMM๊ณผ ๊ฒฝ์Ÿ๋ ฅ ์žˆ๋Š” ๊ฒฐ๊ณผ๋ฅผ ๋ณด์ด๋Š” ๊ฒƒ์„ ํ™•์ธ ํ•˜์˜€๋‹ค. ํŠนํžˆ ๋Œ€ํ™” ์‹œ์Šคํ…œ์˜ ์Œ์„ฑ ์ธ์‹ ๋ชจ๋“ˆ์˜ ์—๋Ÿฌ๋ฅผ ๋ชจ๋ฐฉํ•œ SACTI-1 ๋ง๋ญ‰์น˜์— ๋Œ€ํ•˜์—ฌ ์ œ์•ˆํ•œ ๋ชจ๋ธ์ด SVM-HMM์— ๋น„ํ•˜์—ฌ ๋…ธ์ด์ฆˆ์— ๊ฐ•์ธํ•จ์„ ๋ณด์˜€๋‹ค.In spoken dialog system, e-mail summary system and thread summary system development, dialogue act classifier plays an important role because the systems depend on the performance of classifying dialogue acts of utterances, e-mails and posts to improve completeness of the system. The dialogue act classification problem is a well-known problem to assign the dialogue acts to utterances in a conversation. One of the main challenges in the development of robust dialog systems is especially to deal with noisy input due to imperfect results from Automatic Speech Recognition (ASR) module. The challenge in dialogue act recognition is the mapping from noisy user utterances to dialogue acts. In this paper, to cope with noisy utterances, we describe a noise robust generative model of task-oriented conversation that captures both the speaker information and the dialogue act associated with each utterance under the assumption that a speaker says about something by using appropriate vocabulary with the aim of getting someone to do somethings. The proposed model is based on Markov model and is modified to reflect the assumption. In the experiments, we evaluate the classification results by comparing them to the simple Markov model and state-of-the-art SVM-HMM results. The proposed model is a better conversation model than the simple Markov model and shows the competitive classification results in comparison with SVM-HMM in the task-oriented HCRC map task corpus, live-chat corpus and SACTI-1 corpus. Results based on SACTI-1 corpus which simulates ASR errors particularly show that the proposed model is robust against noisy user utterances.1. ์„œ๋ก  1 1.1 ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ 1 1.2 ์—ฐ๊ตฌ์˜ ๋‚ด์šฉ ๋ฐ ๋ฒ”์œ„ 3 1.3 ๋…ผ๋ฌธ์˜ ๊ตฌ์„ฑ 6 2. ๋ฌธ์ œ ์ •์˜ 7 2.1 ๋Œ€ํ™”๋ฌธ์˜ ๊ตฌ์„ฑ์š”์†Œ 7 2.2 ๋Œ€ํ™” ์˜๋„ ๋ถ„๋ฅ˜ ๋ฌธ์ œ ์ •์˜ 12 2.3 ๋Œ€ํ™”๋ฌธ์˜ ํŠน์ง• ๋ฐ ๋ฌธ์ œ ํ•ด๊ฒฐ์˜ ์–ด๋ ค์šด ์  13 3. ๊ด€๋ จ ์—ฐ๊ตฌ 15 3.1 ์ง€๋„ ํ•™์Šต ๊ธฐ๋ฐ˜์˜ ๋Œ€ํ™” ์˜๋„ ๋ถ„๋ฅ˜ ์—ฐ๊ตฌ 15 3.2 ๋Œ€ํ™” ์˜๋„์˜ ์˜์กด ๊ด€๊ณ„๋ฅผ ๋ชจ๋ธ๋ง ํ•œ ์—ฐ๊ตฌ 16 3.3 ๊ธฐ์กด ์—ฐ๊ตฌ์˜ ํ•œ๊ณ„์  22 4. ๋งˆ๋ฅด์ฝ”ํ”„ ๋ชจ๋ธ ๊ธฐ๋ฐ˜ ๋Œ€ํ™” ์˜๋„ ๋ถ„๋ฅ˜ 24 4.1 ๋ฐฐ๊ฒฝ์ง€์‹ 24 4.1.1 ์–ธ์–ด๋ชจ๋ธ 24 4.1.2 ๋งˆ๋ฅด์ฝ”ํ”„ ๋ชจ๋ธ๊ณผ ์€๋‹‰ ๋งˆ๋ฅด์ฝ”ํ”„ ๋ชจ๋ธ 25 4.2 ์ž…์ถœ๋ ฅ ๋งˆ๋ฅด์ฝ”ํ”„ ๋ชจ๋ธ์„ ๋ณ€ํ˜•ํ•œ ๋Œ€ํ™” ์˜๋„ ๋ถ„๋ฅ˜ ๋ชจ๋ธ 26 5. ์„ฑ๋Šฅ ํ‰๊ฐ€ 31 5.1 ๋Œ€ํ™” ๋ง๋ญ‰์น˜ 31 5.2 ๋น„๊ต๋ชจ๋ธ ๋ฐ ๊ฐœ๋ฐœํ™˜๊ฒฝ 38 5.3 ์„ฑ๋Šฅ ํ‰๊ฐ€ ์ธก์ •์น˜ 39 5.4 ์‹คํ—˜ ๊ฒฐ๊ณผ ๋ฐ ๋ถ„์„ 40 5.4.1 ๋ถ„๋ฅ˜ ์„ฑ๋Šฅ 41 5.4.2 ASR ๋…ธ์ด์ฆˆ์— ๋Œ€ํ•œ ๊ฐ•์ธ์„ฑ 45 5.4.3 ํ™•์žฅ์„ฑ 48 6. ๊ฒฐ๋ก  ๋ฐ ํ–ฅํ›„ ์—ฐ๊ตฌ 50 6.1 ๊ฒฐ๋ก  50 6.2 ํ–ฅํ›„ ์—ฐ๊ตฌ 51 ์ฐธ๊ณ ๋ฌธํ—Œ 53 ABSTRACT 57Maste

    ํ…Œํฌ๋†€๋กœ์ง€๊ฐ€ ํ™œ์šฉ๋œ ์„œ๋น„์Šค์Šค์ผ€์ดํ”„๊ฐ€ ํŒจ์…˜ ๋ฆฌํ…Œ์ผ ๋ธŒ๋žœ๋“œ ํ‰๊ฐ€์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์˜๋ฅ˜ํ•™๊ณผ, 2017. 2. ์ด์œ ๋ฆฌ.์ดˆ ๋ก ๋ณธ ์—ฐ๊ตฌ๋Š” ์˜คํ”„๋ผ์ธ ๋งค์žฅ์˜ ์ฐจ๋ณ„ํ™” ์ „๋žต์œผ๋กœ์จ ์„œ๋น„์Šค์˜ ๋ฌผ๋ฆฌ์  ์š”์†Œ์ธ ๋งค์žฅ๋””์ž์ธ๊ณผ ์‚ฌํšŒ์  ์š”์†Œ์ธ ์ง์›์„œ๋น„์Šค์— ํ…Œํฌ๋†€๋กœ์ง€๊ฐ€ ํ™œ์šฉ ๋˜์—ˆ์„ ๋•Œ, ์†Œ๋น„์ž์˜ ๊ธ์ •์ ์ธ ๋ฐ˜์‘์ด ๋‚˜ํƒ€๋‚˜๋Š”์ง€ ๊ฒ€์ฆํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์ธก์ • ๋ณ€์ˆ˜๋กœ๋Š” ๋ธŒ๋žœ๋“œ ์—ฐ์ƒ๊ณผ ๋ธŒ๋žœ๋“œ-์†Œ๋น„์ž ๊ด€๊ณ„๋ฅผ ์„ค์ •ํ•˜์—ฌ ํ…Œํฌ๋†€๋กœ์ง€๋กœ๋ถ€ํ„ฐ ํ˜•์„ฑ๋˜๋Š” ์†Œ๋น„์ž์˜ ๊ธฐ์–ต ๋ฐ ๋ธŒ๋žœ๋“œ์™€์˜ ์žฅ๊ธฐ์ ์ธ ๊ด€๊ณ„ ํ˜•์„ฑ ์˜๋„๋ฅผ ํ™•์ธํ•˜์˜€์œผ๋ฉฐ, ๊ธฐ์ˆ ์ค€๋น„๋„์˜ ์กฐ์ ˆํšจ๊ณผ๋ฅผ ํ†ตํ•ด ๊ฐœ์ธ์˜ ๊ธฐ์ˆ ์  ์„ฑํ–ฅ์ด ๋ฐœ์ƒ์‹œํ‚ค๋Š” ์ฐจ์ด๋ฅผ ํƒ๊ตฌํ•˜์˜€๋‹ค. ์„ ํ–‰์—ฐ๊ตฌ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋„์ถœํ•œ ์—ฐ๊ตฌ๋ฌธ์ œ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์ฒซ์งธ, ์„œ๋น„์Šค์Šค์ผ€์ดํ”„์˜ ๊ตฌ์„ฑ์š”์†Œ์ธ ๋งค์žฅ๋””์ž์ธ๊ณผ ์ง์›์„œ๋น„์Šค์— ๋Œ€ํ•œ ํ‰๊ฐ€๊ฐ€ ๋ธŒ๋žœ๋“œ์—ฐ์ƒ์— ๋ฏธ์น˜๋Š” ํšจ๊ณผ๋ฅผ ์•Œ์•„๋ณธ๋‹ค. ๋‘˜์งธ, ๋งค์žฅ๋””์ž์ธ๊ณผ ์ง์›์„œ๋น„์Šค์— ๋Œ€ํ•œ ํ‰๊ฐ€๋กœ๋ถ€ํ„ฐ ํ˜•์„ฑ๋œ ๋ธŒ๋žœ๋“œ์—ฐ์ƒ์ด ๋ธŒ๋žœ๋“œ-์†Œ๋น„์ž ๊ด€๊ณ„์— ๋ฏธ์น˜๋Š” ํšจ๊ณผ๋ฅผ ์•Œ์•„๋ณธ๋‹ค. ์…‹์งธ, ๋งค์žฅ๋””์ž์ธ๊ณผ ์ง์›์„œ๋น„์Šค์— ๋Œ€ํ•œ ํ‰๊ฐ€๊ฐ€ ๋ธŒ๋žœ๋“œ์—ฐ์ƒ์— ๋ฏธ์น˜๋Š” ํšจ๊ณผ๋ฅผ ๊ธฐ์ˆ ์ค€๋น„๋„๊ฐ€ ์กฐ์ ˆํ•˜๋Š”์ง€ ์•Œ์•„๋ณธ๋‹ค. ์—ฐ๊ตฌ๋ฌธ์ œ๋ฅผ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•์œผ๋กœ๋Š” ์˜จ๋ผ์ธ ์„ค๋ฌธ์ง€๋ฒ•์„ ์‚ฌ์šฉํ•˜์˜€์œผ๋ฉฐ, 2(๋งค์žฅ๋””์ž์ธ ํ…Œํฌ๋†€๋กœ์ง€ ์œ /๋ฌด) X 2(๋ฉด๋Œ€๋ฉด/๊ธฐ์ˆ ์ง€์› ์ง์›์„œ๋น„์Šค) ์‹คํ—˜ ์„ค๊ณ„์— ๋”ฐ๋ผ ์ œ์ž‘ํ•œ ์ž๊ทน๋ฌผ์„ ์ œ์‹œํ•œ ํ›„ ์‘๋‹ตํ•˜๋„๋ก ํ•˜์˜€๋‹ค. ์ „๋ฌธ๋ฆฌ์„œ์น˜ ๊ธฐ๊ด€์„ ํ†ตํ•ด ๋ชจ์ง‘ํ•œ 20-30๋Œ€ ๋‚จ๋…€ ์ด 456๋ช…์ด ๊ฐ ์ง‘๋‹จ์— ๋žœ๋ค์œผ๋กœ ๋ฐฐ์ •๋˜์—ˆ์œผ๋ฉฐ, ์ˆ˜์ง‘๋œ ์‘๋‹ต์€ SPSS 23.0์„ ์ด์šฉํ•˜์—ฌ ํ†ต๊ณ„์ ์œผ๋กœ ๋ถ„์„ ๋˜์—ˆ๋‹ค. ์šฐ์„  ๋งค์žฅ๋””์ž์ธ๊ณผ ์ง์›์„œ๋น„์Šค์˜ ์œ ํ˜•์— ๋”ฐ๋ฅธ ์ฃผํšจ๊ณผ ๋ฐ ์ƒํ˜ธ์ž‘์šฉ ํšจ๊ณผ๋ฅผ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด ์ด์›๋ถ„์‚ฐ๋ถ„์„์„ ์‹ค์‹œํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ๋งค์žฅ๋””์ž์ธ ํ‰๊ฐ€, ์ง์›์„œ๋น„์Šค ํ‰๊ฐ€, ๋ธŒ๋žœ๋“œ์—ฐ์ƒ, ๋ธŒ๋žœ๋“œ-์†Œ๋น„์ž ๊ด€๊ณ„์— ๋Œ€ํ•ด ๋‘ ๋ณ€์ˆ˜์˜ ์ฃผํšจ๊ณผ ๋ฐ ์ƒํ˜ธ์ž‘์šฉํšจ๊ณผ๋Š” ๋‚˜ํƒ€๋‚˜์ง€ ์•Š์•˜์œผ๋‚˜ ํ…Œํฌ๋†€๋กœ์ง€๊ฐ€ ํ™œ์šฉ๋œ ๋งค์žฅ๋””์ž์ธ ํ‰๊ฐ€์˜ ํ‰๊ท ์ด ์ผ๋ฐ˜์  ๋งค์žฅ๋””์ž์ธ์— ๋น„ํ•ด ๋‹ค์†Œ ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ, ํ…Œํฌ๋†€๋กœ์ง€๊ฐ€ ํ™œ์šฉ๋œ ๋งค์žฅ ๋‚ด ์ง์›์„œ๋น„์Šค ์œ ํ˜•์— ๋”ฐ๋ผ ๊ฐ ๋ณ€์ˆ˜์˜ ํ‰๊ท ์— ์ฐจ์ด๊ฐ€ ๋ฐœ์ƒํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์˜ ๋ชฉ์ ์ด ํ…Œํฌ๋†€๋กœ์ง€์˜ ํšจ๊ณผ๋ฅผ ๊ฒ€์ฆํ•˜๋Š” ๊ฒƒ์ธ ๋งŒํผ ํ…Œํฌ๋†€๋กœ์ง€๊ฐ€ ํ™œ์šฉ๋œ ๋งค์žฅ๋””์ž์ธ ์ง‘๋‹จ 229๋ช…์„ ๋Œ€์ƒ์œผ๋กœ ๋ฉด๋Œ€๋ฉด ์ง์›์„œ๋น„์Šค์™€ ๊ธฐ์ˆ ์ง€์› ์ง์›์„œ๋น„์Šค๋กœ ์œ ํ˜•์„ ๋‚˜๋ˆ„๊ณ  ์ถ”๊ฐ€์ ์ธ ๋ถ„์„์„ ์‹ค์‹œํ•˜์˜€๋‹ค. ๋ถ„์„ ๊ฒฐ๊ณผ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์ฒซ์งธ, ๋งค์žฅ๋””์ž์ธ ํ‰๊ฐ€๋Š” ์ง์›์„œ๋น„์Šค ์œ ํ˜•์— ์ƒ๊ด€ ์—†์ด ๋ธŒ๋žœ๋“œ์—ฐ์ƒ์— ์œ ์˜ํ•œ ์˜ํ–ฅ์ด ์—†์—ˆ๋‹ค. ์ฆ‰, ํ…Œํฌ๋†€๋กœ์ง€๊ฐ€ ํ™œ์šฉ๋œ ๋งค์žฅ๋””์ž์ธ์€ ๋ธŒ๋žœ๋“œ์— ๋Œ€ํ•œ ์†Œ๋น„์ž์˜ ๊ธฐ์–ต์„ ๋†’์—ฌ์ฃผ๋Š” ๋ณดํŽธ์ ์ธ ๊ฒฐ๊ณผ๋ฅผ ๋‚ณ์„ ์ˆ˜ ์—†์Œ์„ ์˜๋ฏธํ•œ๋‹ค. ํ•˜์ง€๋งŒ ์ง‘๋‹จ ๊ฐ„ ๊ณ„์ˆ˜ ๋น„๊ต์— ์žˆ์–ด์„œ๋Š” ๋ฉด๋Œ€๋ฉด ์ง์›์„œ๋น„์Šค๊ฐ€ ์ด๋ฃจ์–ด์งˆ ๊ฒฝ์šฐ ํ…Œํฌ๋†€๋กœ์ง€๊ฐ€ ํ™œ์šฉ๋œ ๋งค์žฅ๋””์ž์ธ์˜ ํšจ๊ณผ๊ฐ€ ๋‹ค์†Œ ๋†’์€ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋‘˜์งธ, ์ง์›์„œ๋น„์Šค๋Š” ํ•ญ์ƒ ๋ธŒ๋žœ๋“œ์—ฐ์ƒ์— ์ •์ ์ธ ์˜ํ–ฅ์ด ์žˆ์Œ์ด ํ™•์ธ๋˜์—ˆ๋‹ค. ์ด๋Š” ๊ธฐ์ˆ  ํ™œ์šฉ ์—ฌ๋ถ€์— ๊ด€๊ณ„ ์—†์ด ์†Œ๋น„์ž๊ฐ€ ์ง์›์˜ ์„œ๋น„์Šค์— ์šฐํ˜ธ์ ์ธ ํ‰๊ฐ€๋ฅผ ๋‚ด๋ ธ๋‹ค๋ฉด ๋ธŒ๋žœ๋“œ์— ๋Œ€ํ•œ ๊ธ์ •์ ์ธ ์—ฐ์ƒ์ด ํ˜•์„ฑ๋จ์„ ์˜๋ฏธํ•œ๋‹ค. ํ•œํŽธ ๊ธฐ์ˆ ์ง€์› ์ง์›์„œ๋น„์Šค์˜ ํšจ๊ณผ๊ฐ€ ๋ฉด๋Œ€๋ฉด ์ง์›์„œ๋น„์Šค๋ณด๋‹ค ๋” ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚œ ๊ฒƒ์œผ๋กœ๋ถ€ํ„ฐ ํ…Œํฌ๋†€๋กœ์ง€๊ฐ€ ํ™œ์šฉ๋œ ๋งค์žฅ๋””์ž์ธ์—๋Š” ์ด์™€ ์–ด์šธ๋ฆฌ๋Š” ์ง์›์˜ ์—ญ๋Ÿ‰์ด ์ค‘์š”ํ•จ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ์…‹์งธ, ๋ธŒ๋žœ๋“œ ์—ฐ์ƒ์€ ๋ธŒ๋žœ๋“œ-์†Œ๋น„์ž ๊ด€๊ณ„์— ์ •์ ์ธ ์˜ํ–ฅ์ด ์žˆ์Œ์ด ๋ฐํ˜€์กŒ๋‹ค. ํ…Œํฌ๋†€๋กœ์ง€๊ฐ€ ํ™œ์šฉ๋œ ๋งค์žฅ๋””์ž์ธ๊ณผ ๋ฉด๋Œ€๋ฉด/๊ธฐ์ˆ ์ง€์› ์ง์›์„œ๋น„์Šค์— ๋Œ€ํ•œ ํ‰๊ฐ€๋กœ๋ถ€ํ„ฐ ํ˜•์„ฑ๋œ ๋ธŒ๋žœ๋“œ์—ฐ์ƒ์€ ๋ธŒ๋žœ๋“œ-์†Œ๋น„์ž์™€์˜ ์žฅ๊ธฐ์ ์ธ ๊ด€๊ณ„๋กœ ์ด์–ด์ง„๋‹ค. ๋„ท์งธ, ํ…Œํฌ๋†€๋กœ์ง€๊ฐ€ ํ™œ์šฉ๋œ ๋งค์žฅ๋””์ž์ธ-๋ฉด๋Œ€๋ฉด ์ง์›์„œ๋น„์Šค ์ง‘๋‹จ์—์„œ ๋งค์žฅ๋””์ž์ธ ํ‰๊ฐ€์— ๋Œ€ํ•œ ๊ธฐ์ˆ ์ค€๋น„๋„ ํ˜์‹ ์„ฑ์˜ ๋ถ€์ ์ธ ์กฐ์ ˆํšจ๊ณผ๊ฐ€ ํ™•์ธ๋˜์—ˆ๋‹ค. ์ฆ‰, ํ‰์†Œ ์ƒˆ๋กœ์šด ๊ธฐ์ˆ  ์ˆ˜์šฉ์— ๋Œ€ํ•ด ๊ธ์ •์ ์ธ ํƒœ๋„๋ฅผ ๊ฐ€์ง„ ์‚ฌ๋žŒ์ผ์ˆ˜๋ก ํ™€๋กœ ๋งค์žฅ ๋‚ด ํ…Œํฌ๋†€๋กœ์ง€๋ฅผ ์‚ฌ์šฉํ•˜๊ฒŒ ๋  ๊ฒฝ์šฐ ๋ธŒ๋žœ๋“œ์—ฐ์ƒ ์ •๋„๊ฐ€ ์•ฝํ™”๋จ์„ ๊ฐ€๋ฆฌํ‚จ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ํ…Œํฌ๋†€๋กœ์ง€์˜ ํ™œ์šฉ์ด ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋Š” ๋ฆฌํ…Œ์ผ ์—…๊ณ„์— ๋Œ€ํ•ด ์‹ค์ฆ์  ํšจ๊ณผ๋ฅผ ๊ฒ€์ฆํ–ˆ๋‹ค๋Š” ํ•™๋ฌธ์  ์˜์˜๋ฅผ ๊ฐ–๋Š”๋‹ค. ๋”์šฑ์ด ์„œ๋น„์Šค์˜ ๋ฌผ๋ฆฌ์  ์š”์†Œ์™€ ์‚ฌํšŒ์  ์š”์†Œ๋ฅผ ์ข…ํ•ฉ์ ์œผ๋กœ ๊ณ ์ฐฐํ•˜๊ณ  ๋ธŒ๋žœ๋“œ์— ๋Œ€ํ•œ ๊ธฐ์–ต์ด ๋ธŒ๋žœ๋“œ-์†Œ๋น„์ž ๊ฐ„์˜ ์žฅ๊ธฐ์ ์ธ ๊ด€๊ณ„๋กœ ๋‚˜์•„๊ฐ€๋Š” ๋งค์ปค๋‹ˆ์ฆ˜์„ ํ™•์ธํ•˜์˜€์œผ๋ฉฐ, ๊ฐœ์ธ์˜ ๊ธฐ์ˆ ์  ์„ฑํ–ฅ์ด ๊ฐ–๋Š” ์กฐ์ ˆ ํšจ๊ณผ๋ฅผ ๊ฒ€์ฆํ–ˆ๋‹ค๋Š” ๋ฐ์— ์‹œ์‚ฌ์ ์„ ์ „๋‹ฌํ•œ๋‹ค. ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ํŒจ์…˜ ๋ฆฌํ…Œ์ผ ๋ธŒ๋žœ๋“œ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์ „๋žต์„ ๋งˆ๋ จํ•  ์ˆ˜ ์žˆ๋‹ค. ์ฒซ์งธ, ๋งค์žฅ๋””์ž์ธ์— ํ˜์‹ ์ ์ธ ๊ธฐ์ˆ ์„ ๋ฐฐ์น˜ํ•˜๋Š” ๋ฐ์— ์ดˆ์ ์„ ๋งž์ถ”๊ธฐ ๋ณด๋‹ค๋Š” ์ด์™€ ์กฐํ™”๋ฅผ ์ด๋ฃจ๋Š” ์ง์›์„œ๋น„์Šค์˜ ์ „๋ฌธ์„ฑ์„ ๊ฐ–์ถ”๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค. ์†Œ๋น„์ž ์Šค์Šค๋กœ ํ…Œํฌ๋†€๋กœ์ง€๋ฅผ ์ด์šฉํ•˜๋„๋ก ํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹Œ ์ง์›๊ณผ์˜ ์ƒํ˜ธ์ž‘์šฉ์„ ํ†ตํ•ด ๊ธฐ์ˆ ์  ์ด์ ์„ ์ œ๊ณตํ•œ๋‹ค๋ฉด ๋ธŒ๋žœ๋“œ์— ๋Œ€ํ•œ ๊ธ์ •์ ์ธ ์—ฐ์ƒ์ด ํ˜•์„ฑ๋  ๊ฒƒ์ด๋‹ค. ๋‘˜์งธ, ํ…Œํฌ๋†€๋กœ์ง€์˜ ํ™”๋ คํ•จ์„ ๊ฐ•์กฐํ•˜๋Š” ๋‹จ๋ฐœ์ ์ธ ์ „๋žต์ด ์•„๋‹Œ ๋ธŒ๋žœ๋“œ์— ๋Œ€ํ•œ ์†Œ๋น„์ž์˜ ์‹ ๋ขฐ์™€ ์• ์ฐฉ์„ ํ˜•์„ฑํ•˜๋Š” ์žฅ๊ธฐ์ ์ธ ์‹œ๊ฐ์„ ์—ผ๋‘์— ๋‘์–ด์•ผ ํ•œ๋‹ค. ์˜คํ”„๋ผ์ธ ๋งค์žฅ์—์„œ์˜ ํŠน๋ณ„ํ•œ ๊ฒฝํ—˜์ด ์†Œ๋น„์ž์˜ ์ผ์ƒ๊ณผ ๊ฐ•ํ•˜๊ฒŒ ์—ฐ๊ฒฐ ๋  ์ˆ˜ ์žˆ์Œ์„ ์ธ์ง€ํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ํ…Œํฌ๋†€๋กœ์ง€๋ฅผ ํ†ตํ•œ ์ผ๊ด€๋œ ์„œ๋น„์Šค๋ฅผ ์ œ๊ณตํ•˜๊ธฐ ๋ณด๋‹ค ์†Œ๋น„์ž ๊ฐœ๊ฐœ์ธ์˜ ์„ฑํ–ฅ์„ ํŒŒ์•…ํ•œ ๋งž์ถคํ™”๋œ ์„œ๋น„์Šค๋ฅผ ์ œ๊ณตํ•ด์•ผ ํ•œ๋‹ค. ๊ธฐ์ˆ  ์ค€๋น„๋„๊ฐ€ ๋‚ฎ์€ ์†Œ๋น„์ž๋“ค์—๊ฒŒ๋Š” ํ…Œํฌ๋†€๋กœ์ง€์˜ ํ™œ์šฉ์„ ๊ฐ€๊น๊ฒŒ ๋Š๋ผ๋„๋ก ํ•˜๋Š” ๋‹จ๊ณ„์ ์ธ ๋งค๋‰ด์–ผ์ด ๋งˆ๋ จ๋˜์–ด์•ผ ํ•˜๋ฉฐ, ๊ธฐ์ˆ ์ค€๋น„๋„๊ฐ€ ๋†’์€ ์†Œ๋น„์ž๋“ค ์œ„ํ•ด์„œ๋Š” ๊ธฐ์ˆ ์— ๋Œ€ํ•œ ์šฐ๋ ค๋ฅผ ์ค„์ด๊ณ  ์ด์ ์„ ๊ฐ•์กฐํ•˜๋Š” ์ง€์†์  ํ™๋ณด๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์ฃผ์š”์–ด : ์„œ๋น„์Šค์Šค์ผ€์ดํ”„, ํ…Œํฌ๋†€๋กœ์ง€, ๋ธŒ๋žœ๋“œ์—ฐ์ƒ, ๋ธŒ๋žœ๋“œ ๊ด€๊ณ„, ๊ธฐ์ˆ ์ค€๋น„๋„ ํ•™ ๋ฒˆ : 2015-21717์ œ 1 ์žฅ ์„œ ๋ก  1 ์ œ 1 ์ ˆ ์—ฐ๊ตฌ์˜ ํ•„์š”์„ฑ ๋ฐ ์˜์˜ 1 ์ œ 2 ์ ˆ ์—ฐ๊ตฌ์˜ ๋ชฉ์  5 ์ œ 2 ์žฅ ์ด๋ก ์  ๋ฐฐ๊ฒฝ 6 ์ œ 1 ์ ˆ ์„œ๋น„์Šค์Šค์ผ€์ดํ”„์™€ ํ…Œํฌ๋†€๋กœ์ง€ 6 1. ์„œ๋น„์Šค์˜ ๋ฌผ๋ฆฌ์ ์š”์†Œ ๋งค์žฅ๋””์ž์ธ 6 2. ์„œ๋น„์Šค์˜ ์‚ฌํšŒ์ ์š”์†Œ ์ง์›์„œ๋น„์Šค 8 3. ๋งค์žฅ ๋‚ด ํ…Œํฌ๋†€๋กœ์ง€์˜ ๋ถ„๋ฅ˜ 9 4. ์†Œ๋น„์ž์˜ ํ…Œํฌ๋†€๋กœ์ง€ ์ˆ˜์šฉ 13 ์ œ 2 ์ ˆ ๋ธŒ๋žœ๋“œ ์—ฐ์ƒ 16 ์ œ 3 ์ ˆ ๋ธŒ๋žœ๋“œ-์†Œ๋น„์ž ๊ด€๊ณ„์˜ ์งˆ 20 ์ œ 4 ์ ˆ ๊ธฐ์ˆ ์ค€๋น„๋„ 24 ์ œ 3 ์žฅ ์—ฐ๊ตฌ ๋ฐฉ๋ฒ• ๋ฐ ์ ˆ์ฐจ 26 ์ œ 1 ์ ˆ ์—ฐ๊ตฌ๊ฐ€์„ค ๋ฐ ์—ฐ๊ตฌ๋ชจํ˜• 26 1. ๊ฐ€์„ค์˜ ์„ค์ • 26 2. ์—ฐ๊ตฌ ๋ชจํ˜• 29 ์ œ 2 ์ ˆ ์—ฐ๊ตฌ๋ฐฉ๋ฒ• ๋ฐ ์ ˆ์ฐจ 30 1. ์ž๊ทน๋ฌผ ์ œ์ž‘ 30 2. ์ž๊ทน๋ฌผ ์กฐ์ž‘ ํ™•์ธ 34 3. ์„ค๋ฌธ์ง€ ๋ฌธํ•ญ์˜ ๊ตฌ์„ฑ 36 ์ œ 3 ์ ˆ ์ž๋ฃŒ์˜ ์ˆ˜์ง‘ ๋ฐ ๋ถ„์„ ๋ฐฉ๋ฒ• 42 1. ์ž๋ฃŒ์˜ ์ˆ˜์ง‘๊ณผ ํ‘œ๋ณธ์˜ ๊ตฌ์„ฑ 42 2. ์ž๋ฃŒ์˜ ๋ถ„์„ 42 ์ œ 4 ์žฅ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ ๋ฐ ๋…ผ์˜ 43 ์ œ 1 ์ ˆ ์ง‘๋‹จ ๊ฐ„ ๋™์งˆ์„ฑ ๊ฒ€์ฆ ํ™•์ธ 43 1. ์ธ๊ตฌํ†ต๊ณ„ํ•™์  ํŠน์„ฑ 43 ์ œ 2 ์ ˆ ์ธก์ • ๋ณ€์ˆ˜์˜ ์‹ ๋ขฐ์„ฑ ๋ฐ ํƒ€๋‹น์„ฑ ๊ฒ€์ฆ 46 1. ๋งค์žฅ๋””์ž์ธ ํ‰๊ฐ€ ๋ณ€์ˆ˜์˜ ์‹ ๋ขฐ์„ฑ ๋ฐ ํƒ€๋‹น์„ฑ ๋ถ„์„ ๊ฒฐ๊ณผ 46 2. ์ง์›์„œ๋น„์Šค ํ‰๊ฐ€ ๋ณ€์ˆ˜์˜ ์‹ ๋ขฐ์„ฑ ๋ฐ ํƒ€๋‹น์„ฑ ๋ถ„์„ ๊ฒฐ๊ณผ 47 3. ๋ธŒ๋žœ๋“œ์—ฐ์ƒ ๋ณ€์ˆ˜์˜ ์‹ ๋ขฐ์„ฑ ๋ฐ ํƒ€๋‹น์„ฑ ๋ถ„์„ ๊ฒฐ๊ณผ 48 4. ๋ธŒ๋žœ๋“œ-์†Œ๋น„์ž ๊ด€๊ณ„ ๋ณ€์ˆ˜์˜ ์‹ ๋ขฐ์„ฑ ๋ฐ ํƒ€๋‹น์„ฑ ๊ฒ€์ฆ 49 5. ๊ธฐ์ˆ ์ค€๋น„๋„ ๋ณ€์ˆ˜์˜ ์‹ ๋ขฐ์„ฑ ๋ฐ ํƒ€๋‹น์„ฑ ๊ฒ€์ฆ 50 ์ œ 3 ์ ˆ ๊ฐ€์„ค ๊ฒ€์ฆ 52 1. ๋งค์žฅ๋””์ž์ธ๊ณผ ์ง์›์„œ๋น„์Šค ์œ ํ˜•์˜ ์ƒํ˜ธ์ž‘์šฉ ํšจ๊ณผ ๊ฒ€์ฆ 52 2. ํ…Œํฌ๋†€๋กœ์ง€๊ฐ€ ํ™œ์šฉ๋œ ๋งค์žฅ ๋‚ด ๋งค์žฅ๋””์ž์ธ๊ณผ ์ง์›์„œ๋น„์Šค ํšจ๊ณผ 60 ์ œ 5 ์žฅ ๊ฒฐ๋ก  ๋ฐ ์ œ์–ธ 72 ์ œ 1 ์ ˆ ์š”์•ฝ ๋ฐ ๊ฒฐ๋ก  72 ์ œ 2 ์ ˆ ์—ฐ๊ตฌ์˜ ์‹œ์‚ฌ์  78 1. ์—ฐ๊ตฌ์˜ ํ•™๋ฌธ์  ์‹œ์‚ฌ์  78 2. ์—ฐ๊ตฌ์˜ ์‹ค๋ฌด์  ์‹œ์‚ฌ์  80 ์ œ 3 ์ ˆ ์—ฐ๊ตฌ์˜ ํ•œ๊ณ„์  ๋ฐ ํ›„์†์—ฐ๊ตฌ๋ฅผ ์œ„ํ•œ ์ œ์–ธ 82 ๋ถ€๋ก 84 ์ฐธ๊ณ ๋ฌธํ—Œ 98 Abstract 111Maste

    ๋‚˜์˜ ์ž‘ํ’ˆ์„ ์ค‘์‹ฌ์œผ๋กœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๋ฏธ์ˆ ๋Œ€ํ•™ ๋ฏธ์ˆ ํ•™๊ณผ, 2022. 8. ๊น€์„ฑํฌ.๋ณธ ๋…ผ๋ฌธ์€ 2018๋…„๋ถ€ํ„ฐ 2022๋…„๊นŒ์ง€ ์ œ์ž‘ํ•œ ํšŒํ™”, ์ž…์ฒด, ๋””์ง€ํ„ธ ์ž‘์—…์„ ์—ฐ๊ตฌ๋Œ€์ƒ์œผ๋กœ ํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์˜ ๋ชฉ์ ์€ ๋‚˜์˜ ์ž‘์—…์„ ํ† ๋Œ€๋กœ ์ž‘์—…์ฐฝ์ž‘์˜ ๊ณ„๊ธฐ, ์ž‘์—…์˜ ๋‚ด์šฉ, ํ‘œํ˜„์˜ ๋ฐฉ์‹, ์กฐํ˜•์  ํŠน์ง•๊ณผ ๊ทธ ์˜์˜๋ฅผ ์—ฐ๊ตฌํ•˜๋Š” ๊ฒƒ์œผ๋กœ ํ•œ๋‹ค. ์ดˆ์—ฐ๊ฒฐ์‚ฌํšŒ๋กœ ์ง„์ž…ํ•œ ํ•œ๊ตญ ํ˜„๋Œ€์ธ์˜ ๋ณ€ํ™”ํ•˜๋Š” ์ž์•„์™€ ์‹ ์ฒด๊ฐ€ ๊ฐ€์ง€๋Š” ํŠน์„ฑ์„ ๋™์•„์‹œ์•„์˜ ๋ชธ์˜ ๊ฐœ๋…์„ ํ†ตํ•ด ์ƒˆ๋กญ๊ฒŒ ํ‘œํ˜„ํ•˜๋Š” ๊ฒƒ์„ ํ•ต์‹ฌ ์ฃผ์ œ๋กœ ํ•œ๋‹ค. ์ธํ„ฐ๋„ท๊ณผ ํ•จ๊ป˜ ์„ฑ์žฅํ•œ ๋‚˜๋Š” ์˜จ๋ผ์ธ ํ™œ๋™ ์† ์ธ๊ฐ„๊ด€๊ณ„๋ฅผ ํ†ตํ•ด ์‚ฌํšŒ๋ฅผ ๊ฒฝํ—˜ํ•œ๋‹ค. ์˜จ๋ผ์ธ๊ณผ ๋‹จ์ ˆ๋œ ๊ฒฝํ—˜์œผ๋กœ ์‹ ์ฒด์  ์ด์ƒ ์ƒํƒœ๋ฅผ ๊ฒฝํ—˜ํ•œ 2018๋…„๋ถ€ํ„ฐ ์ดˆ์—ฐ๊ฒฐ์‚ฌํšŒ ์† ๋‹ค์ค‘์ž์•„์™€ ๊ณต์กดํ•˜๋Š” ์‹ ์ฒด๋ฅผ ๊ฐ€์ง„ ํ˜„๋Œ€์ธ์˜ ๋ชธ์„ ์ฃผ์š” ์ฃผ์ œ๋กœ ์ž‘์—…ํ•ด์™”๋‹ค. ํ˜„๋Œ€์ธ์˜ ๋ชธ ํ‘œํ˜„ ์—ฐ๊ตฌ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์งˆ๋ฌธ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ๋‹ค. ์ฒซ์งธ, ์ดˆ์—ฐ๊ฒฐ์‚ฌํšŒ๋Š” ํ˜„๋Œ€์ธ์—๊ฒŒ ์–ด๋– ํ•œ ๋ณ€ํ™”๋ฅผ ์ฃผ์—ˆ๋Š”๊ฐ€? ๋‘˜์งธ, ์ดˆ์—ฐ๊ฒฐ์‚ฌํšŒ ํ˜„๋Œ€์ธ์˜ ๋ชธ๊ณผ ๋™์•„์‹œ์•„์  ๋ชธ ๊ฐœ๋… ํ™•์žฅ์€ ์–ด๋– ํ•œ ์กฐํ˜•์  ํŠน์„ฑ์„ ๊ฐ€์ง€๋Š”๊ฐ€? ์…‹์งธ, ํ˜„๋Œ€์ธ ๋‹ค์ค‘์ž์•„์˜ ํ˜•์ƒ์€ ์–ด๋– ํ•œ ํ˜•ํƒœ๋กœ ์กด์žฌํ•˜๋Š”๊ฐ€? ๋„ท์งธ, ํ˜„๋Œ€์ธ ์‹ ์ฒด๋ฅผ ์–ด๋– ํ•œ ์‹œ๊ฐ๊ณผ ๋ฌผ์งˆ๋กœ ํ’€์ดํ•˜๋Š”๊ฐ€? ๋‹ค์„ฏ์งธ, ๋‚˜์˜ ์ž‘์—…์€ ์–ด๋– ํ•œ ์ „ํ†ต์„ฑ, ํ˜„์žฌ์„ฑ, ๊ฐœ์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋Š”๊ฐ€? ์ œโ… ์žฅ์—์„œ๋Š” ์—ฐ๊ตฌ์˜ ๋ชฉ์ ๊ณผ ํ•„์š”์„ฑ, ๋‚ด์šฉ ๋ฐ ์—ฐ๊ตฌ ์ง„ํ–‰ ๋ฐฉ๋ฒ•, ์ž‘์—… ์—ฐ๊ตฌ์˜ ์ค‘์š”์„ฑ์„ ์ •๋ฆฌํ•œ๋‹ค. ์ œโ…ก์žฅ์—์„œ๋Š” ์ดˆ์—ฐ๊ฒฐ์‚ฌํšŒ๋กœ์˜ ๋ณ€ํ™” ์† ๋ชธ์˜ ์—ฐ๊ฒฐ์„ฑ๊ณผ ์œ ๋™์„ฑ์„ ๋ถ„์„ํ•œ๋‹ค. ์ฒซ์งธ, ์ดˆ์—ฐ๊ฒฐ์‚ฌํšŒ๊ฐ€ ํ˜•์„ฑ๋˜๋Š” ํŠน์ง•์ธ ์—ฐ๊ฒฐ์„ฑ๊ณผ ๊ทธ๋กœ ์ธํ•ด ๋ฐœ์ƒํ•˜๋Š” ํ•œ๊ณ„์˜ ํ˜„์ƒ์„ ์—ฐ๊ตฌํ•œ๋‹ค. ๋‘˜์งธ, ์ •์‹ , ์‹ ์ฒด, ์šฐ์ฃผ๊ฐ€ ๊ณต์กดํ•˜๋Š” ๋™์•„์‹œ์•„ ๊ณ ์œ ์˜ ๋ชธ ๊ฐœ๋…์„ ์ดˆ์—ฐ๊ฒฐ์‚ฌํšŒ ์† ๋ชธ์— ๋Œ€ํ•œ ๊ฐœ๋…์œผ๋กœ์˜ ํ™•์žฅ ๊ฐ€๋Šฅ์„ฑ์„ ๋„์ถœํ•œ๋‹ค. ์…‹์งธ, ๋‹ค์ค‘ ์ƒ์„ฑ๋˜๋Š” ํ˜„๋Œ€์ธ์˜ ์ž์•„๋ถ„์„๊ณผ ์ด์— ๋”ฐ๋ฅธ ๋ถˆ์•ˆ์ •ํ•œ ๋ชธ์— ๋Œ€ํ•œ ์ธ์‹์„ ํƒ๊ตฌํ•œ๋‹ค. ์ œโ…ข์žฅ์—์„œ๋Š” ๋‚˜์˜ ์ž‘์—…์—์„œ ๋‚˜ํƒ€๋‚˜๋Š” ์ดˆ์—ฐ๊ฒฐ ํ˜„๋Œ€์ธ์˜ ๋ณ€ํ™”๋œ ๋ชธ์„ ์ƒ์ง•ํ•˜๋Š” ํ‘œํ˜„์„ ๋‹ค๋ฃฌ๋‹ค. ์ฒซ์งธ, ์—ฐ๊ฒฐ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์ดˆ์—ฐ๊ฒฐ ํ˜„๋Œ€์ธ ํ‘œํ˜„์„ โ€˜์—ฐ๊ฒฐํ˜ˆ์ž๋ฆฌโ€™ ๊ฐœ๋…์„ ํ†ตํ•ด ์ œ์‹œํ•˜๋ฉฐ ๋งํฌ์„ ๊ณผ ์ค‘์ธต ํ”ฝ์…€, ์˜จ๋ผ์ธ ๊ต๋ฅ˜๊ด€๊ณ„ ์‹œ๊ฐํ™” ๊ณผ์ •์„ ๋ถ„์„ํ•œ๋‹ค. ๋‘˜์งธ, ๋ชธ๊ณผ ๋‹ค์ค‘์ž์•„์˜ ๊ณต์กด ํ˜•ํƒœ๋ฅผ ๋ณ€ํ˜•๋œ ๋ˆˆ๋™์ž ํ‘œํ˜„, ๋‹ค์ค‘์ž์•„์™€์˜ ๊ณต์กด ํ‘œํ˜„, ์œ ๋™์ ์ธ ์ž์•„์˜ ํ˜•ํƒœ ํ‘œํ˜„์„ ํ†ตํ•ด ์ œ์‹œํ•œ๋‹ค. ์…‹์งธ, ์ดˆ์—ฐ๊ฒฐ ๋ชธ์˜ ์‹ ์ฒด์  ๋ณ€ํ™” ํ‘œํ˜„์„ ๋™์•„์‹œ์•„ ์žฅ๋ถ€๋„์—์„œ ํ™•์žฅ๋˜๋Š” ์‹ ์ฒด ํ˜•์ƒ, ๋ณ€ํ™”ํ•˜๋Š” ํŠธ๋žœ์Šคํœด๋จผ, ํƒˆ์‹ ์ฒด๊ด€์˜ ์ƒ์ง•์„ ํ†ตํ•ด ๊ฐ•์กฐํ•œ๋‹ค. ์ œโ…ฃ์žฅ์—์„œ๋Š” ๋ณ€ํ™”๋กœ ์ธํ•ด ๋ฐœ์ƒํ•˜๋Š” ์ดˆ์—ฐ๊ฒฐ ํ˜„๋Œ€์ธ์˜ ๋ณ€ํ™” ๋ถ€์ ์‘ ํ‘œํ˜„์„ ์ œ์‹œํ•œ๋‹ค. ์ฒซ์งธ, ์ดˆ์—ฐ๊ฒฐ ์†์—์„œ ์†Œ์™ธ๋˜๋Š” ๊ด€๊ณ„์˜ ํ˜•์ƒ์„ ๊ธฐ๊ดดํ•จ, ๋น„์šด์  ์š”์†Œ, ๋ณ€์งˆ๋œ ์†Œํ†ต์œผ๋กœ ์ž‘์—…์—์„œ ์‹œ๊ฐํ™”ํ•˜๊ณ  ๊ทธ ๊ณผ์ •์„ ๋ถ„์„ํ•œ๋‹ค. ๋‘˜์งธ, ์ž์•„์˜ ๋‹ค์ค‘๊ณผ ํ˜ผ๋ž€์˜ ํ‘œํ˜„์„ ๋…ธ์ถœ๋œ ์ž์•„์™€ ๋ถˆ์•ˆ๊ฐ, ์ž์•„์˜ ๋ถ€์กฐํ™”์™€ ํ˜ผ๋ž€, ์ต๋ช…์ž์•„์˜ ํญ๋ ฅ์„ฑ์˜ ํ‘œํ˜„์„ ํ†ตํ•ด ์•Œ์•„๋ณธ๋‹ค. ์…‹์งธ, ์‹ ์ฒด์˜ ๋ณ€ํ™” ์†์—์„œ ๋Š๋ผ๋Š” ํ˜„๋Œ€์ธ์˜ ๋ถˆ์•ˆ๊ฐ ํ‘œํ˜„์„ ์‹ ์ฒด ํƒˆ์ฐฉ, ์‹ ์ฒด์˜ ๋น„์ž์—ฐ์  ๋ณ€ํ˜•, ์‹ ์ฒด์˜ ๊ฐ„๊ณผ์™€ ์†Œ์™ธ๊ฐ๋“ค์„ ์ƒ์ง•ํ•˜๋Š” ์ž‘์—…ํ‘œํ˜„์„ ํ†ตํ•ด ์ œ์‹œํ•œ๋‹ค. ์ œโ…ค์žฅ์—์„œ๋Š” ์ž‘์—…์—์„œ ์‚ฌ์šฉ๋œ ๋™์•„์‹œ์•„ ํšŒํ™”์žฌ๋ฃŒ์˜ ํ™•์žฅ ์ ์šฉ๊ณผ ํ˜ผํ•ฉ์ž…์ฒด, ๋””์ง€ํ„ธ๊ธฐ๋ฒ•์˜ ๋ถ„์„์„ ํ†ตํ•˜์—ฌ ์žฌ๋ฃŒ๊ธฐ๋ฒ•์˜ ์ ˆ์ถฉ์„ ํ†ตํ•ด ์ „ํ†ต๊ณผ ํ˜„์žฌ์˜ ์—ฐ๊ฒฐ์„ ์ œ์•ˆํ•œ๋‹ค. ๋‚˜๋Š” ๋™์•„์‹œ์•„ ์ „ํ†ต ์‹ ์ฒด๊ด€๊ณผ ํšŒํ™”๋ฅผ ๊ณ„์Šนํ•˜๋ฉฐ ๋‚˜์•„๊ฐ€ ํ˜„์žฌ ๋ณ€ํ™”ํ•˜๋Š” ํ˜„๋Œ€์ธ ๋ชธ์˜ ๋‹ค์–‘์„ฑ์„ ๋‹ด์„ ์ˆ˜ ์žˆ๋Š” ์ž‘์—…์„ ๋ชจ์ƒ‰ํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋ฅผ ๊ณ„๊ธฐ๋กœ ์ž‘์—… ๊ณผ์ •์„ ๋” ๊นŠ์ด ์ถ”๊ตฌํ•˜์—ฌ ์ƒˆ๋กœ์šด ์ธ๋ฌผํ‘œํ˜„์˜ ๊ฐ€๋Šฅ์„ฑ์„ ๋ฐœ๊ฒฌํ•˜๊ธฐ ํฌ๋งํ•œ๋‹ค.This thesis studies the paintings, three-dimensional artworks, and digital artworks that I created from 2018 to 2022. Through close examination of my practice, my objective is to explore what inspired me to create these works, what they are composed of, how my artistic intention is expressed through them, and how their characteristics can be contextualized within a wider cultural and historical discourse. A key theme of my study will consider how a unique concept of the body within East Asian theory can be used to re-define and express the changing relationships that Koreans have with their bodies and identities within a modern society that is becoming increasingly hyper-connected. As a member of a generation who grew up with the internet, I have experienced this society through extensive interactions with others in online space. Since 2018, when I became ill after I got disconnected from the online world, I have created artworks that explore the theme of the contemporary individual, whose body exists as a multiplicity of identities within the networks of our hyper-connected society. My study of how the modern individual expresses this changing relationship with their body is guided by a number of questions, including; 1. What changes has a hyper-connected society brought about for its population? 2. What are the characteristics of a visual art that explores both an East Asian inspired understanding of the body as well as ideas of the hyper-connected contemporary body? 3. What do the contemporary individualโ€™s multiple identities look like? 4. What are the visual expressions and materials used to express the contemporary individualโ€™s body in my works? 5. How do I define my work in terms of art historical traditions, modernity and individuality? Chapter โ…  provides an overview of the study, including the objective, content, methodology, and relevance of the study. Chapter โ…ก examines the connectivity and fluidity of the body amid societyโ€™s transition into a hyper-connected state. Firstly, the phenomena of connectivity, and its limitations, are studied. Secondly, I explore East Asiaโ€™s unique concept of the body, which is characterized by co-existence of spirit, body, and space, and the potential of this concept to inform ideas of the body in a hyper-connected society. Thirdly, the contemporary individualโ€™s multiple identities are analyzed, and the resultant perception of the body as unstable is examined. Chapter โ…ข covers how my artworks express the changes experienced in the body of the hyper-connected individual. Firstly, the concept of a โ€˜hyper-connected meridianโ€™ is used to express an experience of the modern world that is characterized by connectivity. The process of visualizing connecting links, pixels with multiple meanings, and online interactions is analyzed. Secondly, how the body and its multiple identities co-exist is portrayed through the altered forms of eyes, the co-existence of multiple identities, and the fluid shape of the self. Thirdly, changes in the hyper-connected body are highlighted by expressing the body as an expanded version of the traditional East Asian human-body-organs diagram, revealing the transhuman state implicit in multiple identities and online existences. Chapter IV describes the difficulties that individuals face as a result of their inability to adapt to this new transhuman condition. Firstly, I describe how my work explores marginalized human relationships in the hyper-connected society, through the painted visualization of strangeness, tragic elements, and an ironic deterioration in communication. Secondly, I explore the chaos caused by having multiple identities, including the anxiety felt about oneโ€™s true identity being exposed, confusion caused by having multiple identities, and the violence caused by anonymous online identities. Thirdly, I explore how the sense of uneasiness experienced by the contemporary individualโ€™s changing relationship to the body is visually expressed in my artworks through unnatural physical distortion, disassociation with the body, and the portrayal of marginalization. Chapter V proposes the importance of the continued development of the application of East Asian painting materials in order to garner connections between traditional and present day techniques; specifically the introduction of sculptural objects and other digital technologies within the context of East Asian painting. I seek to create artworks that continue to explore the relevance of the traditional East Asian idea of the body as well as the traditional idea of painting, while using them to convey the contemporary individualโ€™s evolving relationship with the body. I hope that this study helps me to develop a deeper understanding of my artistic process, and to find new possibilities of expression in the genre of portraiture.โ… . ๋จธ๋ฆฌ๋ง 1 1. ์—ฐ๊ตฌ์˜ ๋ชฉ์  ๋ฐ ํ•„์š”์„ฑ 1 2. ์—ฐ๊ตฌ์˜ ๋‚ด์šฉ ๋ฐ ๋ฐฉ๋ฒ• 4 3. ์—ฐ๊ตฌ์˜ ์ค‘์š”์„ฑ 7 โ…ก. ์ดˆ์—ฐ๊ฒฐ์‚ฌํšŒ๋กœ์˜ ๋ณ€ํ™” ์† ๋ชธ์˜ ์—ฐ๊ฒฐ์„ฑ๊ณผ ์œ ๋™์„ฑ 12 1. ์ดˆ์—ฐ๊ฒฐ์‚ฌํšŒ๋กœ์˜ ๋ณ€ํ™” 12 1) ์ดˆ์—ฐ๊ฒฐ์‚ฌํšŒ์˜ ์—ฐ๊ฒฐ์„ฑ 13 2) ์ดˆ์—ฐ๊ฒฐ์‚ฌํšŒ์˜ ํ•œ๊ณ„ 17 2. ๋ชธ์˜ ์—ฐ๊ฒฐ์„ฑ 22 1) ๋™์•„์‹œ์•„์˜ ๋ชธ 23 2) ์ดˆ์—ฐ๊ฒฐ์˜ ๋ชธ 27 3. ๋ชธ์˜ ์œ ๋™์„ฑ 32 1) ๋‹ค์ค‘ ์ƒ์„ฑ๋œ ์ž์•„์™€ ๋ชธ 32 2) ๋ถˆ์•ˆ์ •ํ•œ ๋ชธ 36 โ…ข. ์ดˆ์—ฐ๊ฒฐ ํ˜„๋Œ€์ธ์˜ ๋ชธ ๋ณ€ํ™” ํ‘œํ˜„ 46 1. ์ดˆ์—ฐ๊ฒฐ์„ ๋‹ด์€ ๋ณ€ํ™” ํ‘œํ˜„ 46 1) ์—ฐ๊ฒฐํ˜ˆ์ž๋ฆฌ 48 2) ๋งํฌ ์„ ๊ณผ ์ค‘์ธต ํ”ฝ์…€ 59 3) ์˜จ๋ผ์ธ ๊ต๋ฅ˜ ๊ด€๊ณ„ 67 2. ๋ชธ๊ณผ ๋‹ค์ค‘์ž์•„์˜ ๊ณต์กด ํ‘œํ˜„ 74 1) ๋ณ€ํ˜•๋œ ๋™๊ณต๊ณผ ์ „์‹ (ๅ‚ณ็ฅž) 76 2) ์ž์•„์˜ ๋‹ค์ค‘ ๊ณต์กด 84 3) ๊ฐœ์ธ์˜ ์œ ๋™์  ์ž์•„ 93 3. ์ดˆ์—ฐ๊ฒฐ ๋ชธ์˜ ์‹ ์ฒด์  ๋ณ€ํ™” ํ‘œํ˜„ 104 1) ํ™•์žฅ๋˜๋Š” ์‹ ์ฒด ํ˜•์ƒ 105 2) ๋ณ€ํ™”ํ•˜๋Š” ํŠธ๋žœ์Šคํœด๋จผ 114 3) ์ƒ์ง•๋˜๋Š” ํƒˆ์‹ ์ฒด๊ด€ 127 โ…ฃ. ์ดˆ์—ฐ๊ฒฐ ํ˜„๋Œ€์ธ์˜ ๋ณ€ํ™” ๋ถ€์ ์‘ ํ‘œํ˜„ 136 1. ์ดˆ์—ฐ๊ฒฐ ์† ์†Œ์™ธ์˜ ํ˜•ํƒœ ํ‘œํ˜„ 136 1) ๊ธฐ๊ดดํ•œ ๊ด€๊ณ„ 137 2) ๋น„์šด์  ์š”์†Œ 146 3) ๋ณ€์งˆ๋œ ์†Œํ†ต 158 2. ๋‹ค์ค‘์ž์•„์˜ ํ˜ผ๋ž€ ํ‘œํ˜„ 165 1) ์ž์•„์˜ ๋…ธ์ถœ๊ณผ ๋ถˆ์•ˆ 166 2) ์ž์•„์˜ ๋ถ€์กฐํ™”์™€ ํ˜ผ๋ž€ 173 3) ์ž์•„์˜ ์ต๋ช…์„ฑ๊ณผ ํญ๋ ฅ์„ฑ 181 3. ์‹ ์ฒด์˜ ๋ณ€ํ™” ์† ๋ถˆ์•ˆ ํ‘œํ˜„ 190 1) ์‹ ์ฒด ํƒˆ์ฐฉ์˜ ๋ถˆ์•ˆ๊ฐ 190 2) ์‹ ์ฒด์˜ ๋น„์ž์—ฐ์  ๋ณ€ํ˜• 196 3) ์‹ ์ฒด์˜ ๊ฐ„๊ณผ์™€ ์†Œ์™ธ๊ฐ 204 โ…ค. ์žฌ๋ฃŒ ํ‘œํ˜„๊ธฐ๋ฒ• 211 1. ํšŒํ™”์žฌ๋ฃŒ ํ‘œํ˜„๊ธฐ๋ฒ• 211 1) ํ•„๋ฒ• 212 2) ์ฑ„์ƒ‰๊ธฐ๋ฒ• 223 3) ๋ฐ”ํƒ• ์žฌ์งˆ๊ณผ ๊ธฐ๋ฒ• 235 2. ๊ธฐํƒ€ ๋งค์ฒด ํ‘œํ˜„๊ธฐ๋ฒ• 240 1) ํ˜ผํ•ฉ์ž…์ฒด 240 2) ๋””์ง€ํ„ธ 247 โ…ฅ. ๋งบ์Œ๋ง 254 ์ฐธ๊ณ ๋ฌธํ—Œ 259 Abstract 269๋ฐ•

    The Detailed Dimensions and Quality Assessment Standards in Korean Landscape Woody Plants

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ํ™˜๊ฒฝ๋Œ€ํ•™์› : ํ˜‘๋™๊ณผ์ • ์กฐ๊ฒฝํ•™, 2013. 2. ๊น€์„ฑ๊ท .๊ทผ๋ž˜ ์กฐ๊ฒฝ๊ณต์‚ฌ๋Š” ์•„ํŒŒํŠธ ์™ธ๋ถ€๊ณต๊ฐ„์— ๋Œ€ํ•œ ๋น„์ค‘์ด ์ปค์ ธ ๋ฌผ๋Ÿ‰์ด ๋Š˜์–ด๋‚ฌ์„ ๋ฟ ์•„๋‹ˆ๋ผ, ๊ตญํ† ๊ฐœ๋ฐœ์— ์˜ํ•œ ๊ทœ๋ชจ๋„ ์ปค์ง์— ๋”ฐ๋ผ ์กฐ๊ฒฝ๊ณต์‚ฌ์˜ ์–‘์  ์„ฑ์žฅ์€ ๊ถค๋„์— ์ง„์ž…ํ•˜์˜€๋‹ค. ๋˜ํ•œ ์กฐ๊ฒฝ๊ณต์‚ฌ ์ˆ˜์ฃผ์•ก์˜ ๋ฐ˜ ์ด์ƒ์„ ์ฐจ์ง€ํ•˜๋Š” ์กฐ๊ฒฝ ์‹์žฌ๊ณต์‚ฌ๋„ ๊ณต์‚ฌ๊ทœ๋ชจ์˜ ๋Œ€ํ˜•ํ™”, ์ˆ˜์ข…์˜ ๋‹ค์–‘ํ™” ๋ฐ ๊ทœ๊ฒฉ์˜ ๋Œ€ํ˜•ํ™”, ๊ด€๋ชฉ๊ณผ ์ง€ํ”ผ์ดˆํ™” ์‹œ์žฅ์˜ ์„ฑ์žฅ ๋“ฑ์œผ๋กœ ๋ฐœ์ „ํ•˜์˜€๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋Œ€ํ˜•ํ™”๋˜๊ณ  ๋ฐœ์ „์ ์ธ ์กฐ๊ฒฝ์‹œ์žฅ์—์„œ ์„ฑ์žฅ ์†๋„๊ฐ€ ๋”๋”˜ ๋ถ„์•ผ๊ฐ€ ์กฐ๊ฒฝ์ˆ˜๋ชฉ์˜ ์œ ํ†ต์ด๋‹ค. ์ˆ˜๋ชฉ ์œ ํ†ต์€ ์—ฌ์ „ํžˆ ์ˆ˜๋ชฉ์ƒ์‚ฐ์— ๋Œ€ํ•œ ์ •ํ™•ํ•œ ์ •๋ณด์™€ ๊ฑฐ๋ž˜์˜ ๊ธฐ๋ณธ์ด ๋˜๋Š” ํ’ˆ์งˆ ๊ธฐ์ค€์ด ์ถฉ์‹คํ•˜์ง€ ๋ชปํ•˜๋ฉฐ, ๋‹ค๋ฅธ ์‚ฐ์—…๊ตฌ์กฐ์™€ ๋‹ฌ๋ฆฌ ๊ทœ๊ฒฉํ™”, ํ‘œ์ค€ํ™”, ์ •๋ณดํ™”์— ๋’ค์ณ์ ธ ์žˆ๋‹ค. ๋˜ํ•œ, ํ˜„์žฌ ๊ฑฐ๋ž˜๋˜๋Š” ์ˆ˜๋ชฉ์˜ ๊ทœ๊ฒฉ์ด๋‚˜ ์ˆ˜์„ธ(๊ฑด๊ฐ•)์— ๋Œ€ํ•œ ๊ธฐ์ค€์€ ์ˆ˜๋ชฉ์˜ ํŠน์„ฑ์„ ๋ฐ˜์˜ํ•˜์ง€ ์•Š์€ ๊ทœ๊ฒฉ์ด๋ฉฐ, ๋ช…ํ™•ํ•˜์ง€ ๋ชปํ•˜์—ฌ ์กฐ๊ฒฝํ’ˆ์งˆ ๊ธฐ์ค€์„ ์„ค์ •ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ณ„๋Ÿ‰ํ™”์™€ ์„ธ๋ถ„ํ™”๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ๋Š” ์กฐ๊ฒฝ๊ณต์‚ฌ์—์„œ ๋งค์šฐ ์ค‘์š”ํ•œ ์œ„์น˜๋ฅผ ์ฐจ์ง€ํ•˜๊ณ  ์žˆ๋Š” ์กฐ๊ฒฝ์ˆ˜๋ชฉ์ด ์ƒ์• ์ฃผ๊ธฐ ์ธก๋ฉด์—์„œ ์นœํ™˜๊ฒฝ์ ์ธ ๊ฑด์„ค์ด ๋  ์ˆ˜ ์žˆ๋„๋ก ํ’ˆ์งˆํ™•๋ณด์˜ ์ฐจ์›์—์„œ ์กฐ๊ฒฝ์ˆ˜๋ชฉ ํ’ˆ์งˆ ํ‘œ์ค€ํ™”์˜ ์„ธ๋ถ€๊ธฐ์ค€์„ ์ˆ˜๋ฆฝํ•˜๋Š” ๋ฐ ๋ชฉ์ ์ด ์žˆ๋‹ค.Recently, as the role of outdoor space is becoming more important, the supply of landscape projects have increased. Also, the enlargement of the size of land development has lead to the quantitative growth of landscape projects. Moreover, the work of planting trees, which consists more than half of the investment expenditures of landscape projects, has grown into a large scale project, with more diversity of tree types, advancement of dimensions, development of shrub and ground covers market, etc. However, while landscape market is becoming bigger and more systematic, the progress of the distribution of trees are relatively slow. This is because the structural system for the distribution of trees lacks dimension, standardization and information as there is no standard for an accurate data and quality. Also, each characteristic of trees are not applied to the dimensions and standard regarding the physical condition of trees that are being traded. Thus, a measurement and specification will be needed to set standards for an enhanced quality of landscape. Therefore, this study aims to establish specific guidelines for the standardization of the quality of landscape woody plants. This can result into an environmental construction that considers the overall life-cycle of landscape trees which is crucial in landscape projects. The study is carried out by analyzing foreign cases, in which landscape woody plants are properly classified, and developing a concept outline. Afterwards, with the concept outline, the study will analyze and evaluate the standards of domestic and foreign landscape woody plants and examine the possibility of applying it in Korea. Finally, through in-depth interviews of experts, a preliminary study, and 3 delphi surveys, the study will establish the standardization of landscape woody plants. The following shows the result of this study.์ œ I ์žฅ ์„œ ๋ก  ์ œ 1 ์ ˆ ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  ์ œ 2 ์ ˆ ์—ฐ๊ตฌ์˜ ๋‚ด์šฉ ๋ฐ ๋ฒ”์œ„ ์ œ 3 ์ ˆ ์—ฐ๊ตฌ์˜ ๋ฐฉ๋ฒ• ์ œ 4 ์ ˆ ์šฉ์–ด์˜ ์ •์˜ ์ œ 2 ์žฅ ๊ด€๋ จ ์—ฐ๊ตฌ ๋™ํ–ฅ ์ œ 1 ์ ˆ ํ•ด์™ธ์˜ ๋ฌ˜๋ชฉ ํ’ˆ์งˆํ‰๊ฐ€ ์—ฐ๊ตฌ ๊ฐ€. Chavasse์˜ ์„ฑ๋Šฅ์š”์†Œ์— ์˜ํ•œ ๋ฌ˜๋ชฉํ‰๊ฐ€ ๋‚˜. Ritchie์˜ ์žฌ๋ฃŒ ๋ฐ ์„ฑ๋Šฅ ์†์„ฑ์— ์˜ํ•œ ๋ฌ˜๋ชฉ ํ‰๊ฐ€ ๋‹ค. Grossnickle์˜ ์„ฑ๋Šฅ์ž ์žฌ์ง€์ˆ˜์— ์˜ํ•œ ๋ฌ˜๋ชฉํ‰๊ฐ€ ๋ผ. Wilson์˜ ํ’ˆ์งˆ์ง€์ˆ˜์— ์˜ํ•œ ๋ฌ˜๋ชฉํ‰๊ฐ€ ๋งˆ. Thompson์˜ ํ˜•ํƒœํ‰๊ฐ€๋ชจ๋ธ ์™ธ ์ œ 2 ์ ˆ ํ•œ๊ตญ์˜ ์กฐ๊ฒฝ์ˆ˜๋ชฉ ํ’ˆ์งˆํ‰๊ฐ€ ์—ฐ๊ตฌ ์ œ 3 ์žฅ ๊ฐœ๋…์  ํ‹€์˜ ๊ฐœ๋ฐœ ์ œ 1 ์ ˆ ๋ฌ˜๋ชฉ ํ’ˆ์งˆํ‰๊ฐ€์— ์žˆ์–ด์„œ ํ˜•ํƒœ/์ƒ๋ฆฌ ์ธก์ •๋ฒ• ์ œ 2 ์ ˆ ๋ฌ˜๋ชฉ๊ณผ ์กฐ๊ฒฝ์ˆ˜๋ชฉ์˜ ํ˜•ํƒœ์™€ ์ƒ๋ฆฌ ์ œ 4 ์žฅ ๊ฐœ๋…์  ํ‹€์˜ ์ ์šฉ์„ ์œ„ํ•œ ์‚ฌ๋ก€ ์—ฐ๊ตฌ ์ œ 1 ์ ˆ ๊ฐœ๋…์  ํ‹€์˜ ์ ์šฉ์„ ์œ„ํ•œ ์‚ฌ์ „ ์—ฐ๊ตฌ ์ œ 2 ์ ˆ ํ•œ๊ตญ ์กฐ๊ฒฝ์ˆ˜๋ชฉ ๊ทœ๊ฒฉ ๋ฐ ํ’ˆ์งˆ ๊ธฐ์ค€ ์ œ 3 ์ ˆ ํ•ด์™ธ ์กฐ๊ฒฝ์ˆ˜๋ชฉ ๊ทœ๊ฒฉ ๋ฐ ํ’ˆ์งˆ ๊ธฐ์ค€ ๊ฐ€. ์ผ๋ณธ์˜ ๊ณต๊ณต์šฉ ๋…นํ™”์ˆ˜๋ชฉ ๋‚˜. ๋ฏธ๊ตญ์˜ ์กฐ๊ฒฝ์‹๋ฌผ ๋‹ค. ์บ๋‚˜๋‹ค์˜ ์กฐ๊ฒฝ์‹๋ฌผ ๋ผ. ์˜๊ตญ์˜ ์กฐ๊ฒฝ์ˆ˜๋ชฉ ์ œ 4 ์ ˆ ํ•œ๊ตญ๊ณผ ํ•ด์™ธ์˜ ์กฐ๊ฒฝ์ˆ˜๋ชฉ ๊ทœ๊ฒฉ ๋น„๊ต ์ œ 5 ์ ˆ ํ•œ๊ตญ๊ณผ ํ•ด์™ธ์˜ ์กฐ๊ฒฝ์ˆ˜๋ชฉ ํ’ˆ์งˆ ๋น„๊ต ์ œ 6 ์ ˆ ํ•œ๊ตญ๊ณผ ํ•ด์™ธ์˜ ์กฐ๊ฒฝํ‘œ์ค€ ๋น„๊ต ์ œ 5 ์žฅ ์ „๋ฌธ๊ฐ€ ์„ค๋ฌธ์กฐ์‚ฌ ์ œ 1 ์ ˆ ์กฐ์‚ฌ ์„ค๊ณ„ ๊ฐ€. ์ „๋ฌธ๊ฐ€ ์‹ฌ์ธต์ธํ„ฐ๋ทฐ ๋‚˜. ๋ธํŒŒ์ด ์กฐ์‚ฌ ์ œ 2 ์ ˆ ์ „๋ฌธ๊ฐ€ ์‹ฌ์ธต์ธํ„ฐ๋ทฐ ๊ฒฐ๊ณผ ์ œ 3 ์ ˆ ๋ธํŒŒ์ด ์กฐ์‚ฌ ๊ฒฐ๊ณผ ์ œ 6 ์žฅ ๊ฒฐ ๋ก  ์ œ 1 ์ ˆ ์—ฐ๊ตฌ๊ฒฐ๊ณผ ์š”์•ฝ ์ œ 2 ์ ˆ ์—ฐ๊ตฌ์˜ ํ•œ๊ณ„ ๋ฐ ํ–ฅํ›„ ๊ณผ์ œ โš ์ธ์šฉ๋ฌธํ—Œ โš ๋ถ€ ๋ก 1. ๋ฌ˜๋ชฉ ํ’ˆ์งˆํ‰๊ฐ€์— ๊ด€ํ•œ ํ•ด์™ธ๋…ผ๋ฌธ 2. ๊ตญ๋‚ด & ํ•ด์™ธ์˜ ์กฐ๊ฒฝ๊ธฐ์ค€ ์ „๋ฌธ์œ„์›ํšŒ 3. ํ•ด์™ธ์˜ ์กฐ๊ฒฝ๊ธฐ์ค€ ๋ชฉ์ฐจ 4. ๊ตญ๋‚ด & ํ•ด์™ธ ์กฐ๊ฒฝ๊ธฐ์ค€ 5. ๋ฏธ๊ตญ ํ”Œ๋กœ๋ฆฌ๋‹ค ์กฐ๊ฒฝ์ˆ˜๋ชฉ ํ’ˆ์งˆ๋“ฑ๊ธ‰ 6. ์ „๋ฌธ๊ฐ€ ์‹ฌ์ธต์ธํ„ฐ๋ทฐ ์„ค๋ฌธ์กฐ์‚ฌ์ง€ 7. ๋ธํŒŒ์ด์กฐ์‚ฌ ์„ค๋ฌธ์ง€ โš ABSTRACTDocto

    DHPV์˜ ์‚ฐํ™”์ ์ŠคํŠธ๋ ˆ์Šค์— ์˜ํ•œ ์‹ ๊ฒฝ์„ธํฌ์‚ฌ๋ฉธ ์–ต์ œ ๋ฐ ํ•ญ์‚ฐํ™” ํšจ๋Šฅ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› ๋†์—…์ƒ๋ช…๊ณผํ•™๋Œ€ํ•™ ๋†์ƒ๋ช…๊ณตํ•™๋ถ€(๋ฐ”์ด์˜ค๋ชจ๋“ˆ๋ ˆ์ด์…˜์ „๊ณต), 2017. 8. ์ด๊ธฐ์›.Procyanidins are the most abundant phytochemicals in the dietary food and responsible for the health effects of cocoa. However due to low absorption of procyanidins, recently researchers are focusing on the simple metabolites of cocoa that are catalyzed by intestinal microbiota and exert health effects. The aim of this study is to figure out the neuroprotective effect of 5-(3,4-Dihydroxyphenyl)-ฮณ-valerolactone (DHPV), a min metabolite of cocoa procyanidins, against hydrogen peroxide-induced oxidative stress in primary cortical neurons. Oxidative stress is strongly associated with many diseases such as neurodegenerative disorders, cancers and cardiovascular diseases and oxidative stress is induced by reactive oxygen species such as hydrogen peroxide (H2O2). In this study, I identified the protective effects of DHPV on oxidative neuronal death. Results showed that H2O2-induced nuclear condensation in apoptotic neurons was inhibited by pre-treatment with DHPV. Pre-treatment with DHPV prevented the H2O2-induced decrease of anti-apoptotic protein, Bcl-2 and inhibited H2O2-induced cleavage of caspase-3 and poly(ADP-ribose) polymerase. I also found that DHPV induced the expression of NADPH:quinone oxidoreductase 1 (NQO1) and enhanced nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2), a principal antioxidant transcription factor in neuronal cells, demonstrating that DHPV protects neurons from H2O2-induced apoptosis by up-regulation of phaseโ…ก antioxidant enzymes.โ… . INTRODUCTION 1 โ…ก. MATERIALS AND METHODS 6 1. Chemicals and reagents 6 2. Primary neuronal culture 7 3. MTT assay 8 4. Tunel assay 9 5. Western blot analysis 10 6. Measurement of intracellular ROS level 12 7. Immunofluorescence 13 8. Statistical analysis 14 โ…ข. RESULTS 15 1. DHPV concentration up to 80 M has no toxic effect on primary cortical neurons 15 2. DHPV inhibits H2O2-induced apoptosis in primary cortical neurons. 18 3. DHPV attenuates H2O2-induced down-regulation of Bcl-2 and cleavage of caspase-3 and pro-PARP 22 4. DHPV reduces intracellular ROS level by up-regulating the expression of NQO1 26 5. DHPV up-regulate the activation of the major antioxidant transcriptional factor, Nrf2 30 โ…ฃ. DISCUSSION 33 โ…ค. REFERENCES 38 โ…ฅ. ๊ตญ๋ฌธ ์ดˆ๋ก 43Maste

    ้Œข้พๆ›ธ ๅฐ่ชช ็ก็ฉถ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ค‘์–ด์ค‘๋ฌธํ•™๊ณผ ๋ฌธํ•™์ „๊ณต,1998.Maste
    • โ€ฆ
    corecore