22 research outputs found
๋ฐฉ์ฌ ๋ฌด์ ์ ๋ ฅ์ ์ก์ ์ํ ๋ฌด์งํฅ์ฑ ์ํ ๋ ๋ฐ ์ ์ก ํจ์จ ํ๊ณ์ ๋ํ ์ฐ๊ตฌ
ํ์๋
ผ๋ฌธ (๋ฐ์ฌ) -- ์์ธ๋ํ๊ต ๋ํ์ : ๊ณต๊ณผ๋ํ ์ ๊ธฐยท์ ๋ณด๊ณตํ๋ถ, 2020. 8. ๋จ์์ฑ.๋ณธ ๋
ผ๋ฌธ์๋ ๋ฐฉ์ฌํ๋ ์ ์ํ๋ฅผ ์ด์ฉํ ๋ฌด์ ์ ๋ ฅ ์ ์ก์ ๋ํด ์ง์ค์ ์ผ๋ก ์ฐ๊ตฌ๋ฅผ ์งํํ์๋ค. ๋ณด๋ค ๊ตฌ์ฒด์ ์ผ๋ก๋, ๋ฌด์งํฅ์ฑ ์ํ
๋์ ๋ถ์๊ณผ ์ค๊ณ, ์์ ๊ณต๊ฐ๊ณผ ์์ค๋งค์ง์์์ ์ต์ ์ก์ ์ ๋ฅ ๋ถํฌ, ์ ์ก ํจ์จ์ ํ๊ณ์ ๋ํ ์ฐ๊ตฌ๋ฅผ ๊ธฐ์ ํ์๋ค. ์ถ๊ฐ์ ์ผ๋ก, ์ ์ํ์ ์ธ์ฒด ์ํฅ์ ๋ํ ๋น๊ต ๋ฐ ์ด๋ก ์ ์ธ ์ต์ ์ ๋ฅ ๋ถํฌ์ ํจ๊ณผ์ ๊ตฌํ์ ๋ํ ์ฐ๊ตฌ๋ฅผ ์งํํ์๋ค. ๋ณธ ์ฐ๊ตฌ์์๋ ๋ฐฉ์ฌํ ๋ฌด์ ์ ๋ ฅ์ ์ก์ ์ ์์ ๊ณต๊ธ ์ ๋ฌด์ ๋ฐ๋ผ ์๋ํ๊ณผ ๋ฅ๋ํ ๋ฌด์ ์ ๋ ฅ์ ์ก์ผ๋ก ๊ตฌ๋ถํ๊ณ , ์๋ํ ๋ฐฉ์ฌ ๋ฌด์ ์ ๋ ฅ์ ์ก๋ถํฐ ๋ฅ๋ํ ๋ฐฉ์ฌ ๋ฌด์ ์ ๋ ฅ์ ์ก๊น์ง์ ์ฐ๊ตฌ๋ฅผ ์์ฐจ์ ์ผ๋ก ๊ธฐ์ ํ์๋ค.
๋จผ์ , ์๋ํ ๋ฐฉ์ฌ ๋ฌด์ ์ ๋ ฅ์ ์ก ์ฐ๊ตฌ์์๋ ์ ์ํ ์๋์ง ํ๋ฒ ์คํ
์ฉ ์ํ
๋์ ๋ํ ๋ถ์ ๋ฐ ์ค๊ณ์ ๋ํ ์ฐ๊ตฌ๋ฅผ ์งํํ์๋ค. ์๋ ๋ฐฉ์ฌ ๋ฌด์ ์ ๋ ฅ์ ์ก์ ์ํฉ์ ๊ณ ๋ คํ์ฌ ๋ฑ๋ฐฉ์ฑ ํจํด, ์ ๊ธฐ์ ์ผ๋ก ์์ ํฌ๊ธฐ, ๋์ ํจ์จ ํน์ฑ์ ๋ํ๋ด๋ ์ํ
๋๋ฅผ ์ ์ํ์๋ค. ์ ๊ธฐ์ ์ผ๋ก ์ํ์ด๋ฉด์ ๋ฑ๋ฐฉ์ฑ ํจํด์ ๋ฐฉ์ฌํ๋ SRR์ด ๊ธฐ๋ณธ ๊ตฌ์กฐ๋ก ํ์ฉ๋์๋ค. SRR์ ๋ํ ์ด๋ก ์ ๋ถ์์ ์งํํ์๊ณ , ์๋ฎฌ๋ ์ด์
๊ฒฐ๊ณผ์ ์ ๋ง๋ ๊ฒ์ ํ์ธํ์๋ค. ๋ถ์์ ๊ธฐ์ดํ์ฌ FSRR ์ํ
๋๋ฅผ ์ค๊ณํ์๊ณ , ์ธก์ ์ ํตํด ์ ์ํ ์์ด๋์ด๋ฅผ ๊ฒ์ฆํ์๋ค. ์์ ํ์์ ํฌ๊ธฐ๋ฅผ ํฅ์์ํค๊ธฐ ์ํด, ์ด์ค ๋์ญ ๋ฐ ํ์ฅ๋ ๋์ญ์์ ๋์ํ๋ FSRR ์ํ
๋๋ฅผ ์ถ๊ฐ๋ก ์ค๊ณํ์๋ค. ์ ์๋ ๊ตฌ์กฐ๋ ์ ํ์ฐ๊ตฌ์ ๋น๊ตํ์์ ๋, ์๋์ ์ผ๋ก ์ฐ์ํ ์ฑ๋ฅ์ ๋ณด์ฌ์ฃผ์๋ค. ํํธ ์๋ํ ๋ฐฉ์ฌ ๋ฌด์ ์ ๋ ฅ์ ์ก์ ๊ฒฝ์ฐ, ์ฃผ๋ณ์ ๋ฎ์ ์ ๋ ฅ ๋ฐ๋๋ก ์ธํด ์์ ์ ๋ ฅ์ด ๋งค์ฐ ๋ฎ์ ํ๊ณ์ ์ด ์กด์ฌํ๋ค. ๋ฐ๋ผ์, ์ก์ ํ์๋ฅผ ์ด์ฉํด ๋ชจ๋ฐ์ผ ์ํ
๋๋ก ๋ฌด์ ์ ๋ ฅ์ ์ ์กํ ์ ์๋ ๋ฅ๋ํ ๋ฐฉ์ฌ ๋ฌด์ ์ ๋ ฅ์ ์ก์ ๋ํ ํ์ ์ฐ๊ตฌ๋ฅผ ์งํํ์๋ค.
๋ฅ๋ํ ๋ฐฉ์ฌ ๋ฌด์ ์ ๋ ฅ์ ์ก์์๋, ์ก์ ํ์๋ฅผ ํ์ฉํ์ฌ ๋ชจ๋ฐ์ผ ๊ธฐ๊ธฐ์ ํจ๊ณผ์ ์ผ๋ก ๋ฌด์ ์ ๋ ฅ์ ์ก์ ์ํํ๋ ๋ฐฉ๋ฒ์ ๋ํ ์ฐ๊ตฌ๋ฅผ ์งํํ์๋ค. ๋ณธ ์ฐ๊ตฌ์์๋ ๋ฐฉ์ฌํ ๋ฌด์ ์ ๋ ฅ์ ์ก์ ํจ์จ์ ์ต๋ํ ํ๋ ์ก์ ์ ๋ฅ๋ถํฌ์ ์ฃผ์ด์ง ๋ฉด์ ์ ํ์ฉํ ๋ ์ป์ ์ ์๋ ์ต๋ ํ๊ณ ํจ์จ์ ์ด๋ก ์ ์ผ๋ก ๋์ถํ์๋ค. ๋ณธ ์ฐ๊ตฌ์ ๊ฒฐ๊ณผ๋ฅผ ํตํด, ๊ธฐ์กด์ ๋ฐฉ์์ผ๋ก๋ ํ์
ํ ์ ์์๋ ์ค๊ฑฐ๋ฆฌ ๋ฌด์ ์ ๋ ฅ์ ์ก ํจ์จ์ ์ต๋ ํ๊ณ์น์ ์ก์ ์ ๋ฅ๋ถํฌ์ ์ต์ ํํ๋ฅผ ํ์
ํ ์ ์๋ค. ์ฐ๊ตฌ์ ๊ฒฐ๋ก ์ ๋ฐ๋ฅด๋ฉด, ์์ ํ๋ ์ํ
๋์ ์ก์ ๋ฐฉ์ฌ ํจํด์ด ํจ์จ์ ๊ฒฐ์ ํจ์ ์์ด ์ค์ํ ์ญํ ์ ํ์๋ค. ์ ์ํ ์ด๋ก ์ ์ค์ ์ํ
๋์ ์ ์ฉํ์ฌ ์ ํ์ฐ๊ตฌ์ ๋น๊ต๋ฅผ ํ์๊ณ , ์ ํ ์ฐ๊ตฌ๋ก ํ์
ํ ์ ์๋ ์ด๋ก ์ ํ๊ณ ํจ์จ์ ๋์ถํ์๋ค. ์ ์ํ ์ฐ๊ตฌ๋ฅผ ์ผ๋ฐ์ ์ธ ์ํฉ์ผ๋ก ํ์ฅํ๊ธฐ ์ํด ์์ค ๋งค์ง ๋ด๋ถ์์์ ๋ฌด์ ์ ๋ ฅ์ ์ก์ ๋ํ ์ถ๊ฐ ์ฐ๊ตฌ๋ฅผ ์งํํ์๋ค. ์์ค ๋งค์ง์ด ์๋ ๊ฒฝ์ฐ์์๋ ์ต์ ์ ๋ฅ ๋ถํฌ์ ํจ์จ์ ์ต๋ ํ๊ณ์น๋ฅผ ๋์ถํ์๋ค. ์ต์ ์ก์ ์ ๋ฅ๋ฅผ ํ์ฉํ์ฌ, ์ค์ ์ํ
๋ ์ด๋ ์ด๋ฅผ ๊ตฌํํ๊ณ ์ธ์ฒด ํฌํ
์ ๋ฏธ์น๋ ์ํฅ์ ํ์
ํด๋ณด์๋ค.
๋ง์ง๋ง์ผ๋ก, ์์ ๋์ถํ ์ด๋ก ์ ์ธ ์ ๋ฅ๋ถํฌ๋ฅผ ์ค์ ์ํ
๋๋ก ๊ตฌํํ๋ ๋ฐฉ๋ฒ์ ๋ํด ์ฐ๊ตฌ๋ฅผ ์งํํ์๋ค. ์ ํ ์ฐ๊ตฌ๋ฅผ ์ฐธ๊ณ ํ์ฌ, ์ด์์ ์ธ ์ ๋ฅ๋ถํฌ๋ฅผ thinned ๋ฐฐ์ด๋ก ๊ตฌํํ๋ ๋๊ฐ์ง ๋ฐฉ๋ฒ์ ์ ์ํ์๋ค. ์ด๋ก ์ ์ธ ์ ๋ฅ ๋ถํฌ์ ์ ์ ์๊ณ ๋ฆฌ์ฆ์ ํ์ฉํ ๋ฐฉ๋ฒ๊ณผ, density tapering์ ์์ฉํ ๋ฐฉ๋ฒ์ ์ ์ฉํ์๋ค. ๋ ๋ฐฉ๋ฒ ๋ชจ๋ ๋์ผํ ๊ฐ์์ ๊ท ๋ฑ ์ด๋ ์ด์ ๋นํด ์ฑ๋ฅ์ด ๊ฐ์ ๋๋ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์๋ค. ํนํ density tapering์ ์ด์ฉํ๋ฉด ๊ฐ์ ๊ฐ์ ๋ฐ ๊ฐ์ ๋ฉด์ ์ ๊ฒฉ์๊ตฌ์กฐ๋ณด๋ค ๋น์ฉ, ๋ฌด๊ฒ, ํจ์จ ๋ฑ์์ ์ฅ์ ์ด ์์ผ๋ฉฐ, ์์ ๊ธฐ์ ์์น๊ฐ ๋ณํ ๋์๋ ๋ ๋์ ํจ์จ๋ก ์ก์ ์ด ๊ฐ๋ฅํ๋ค.In this thesis, research on the radiative-wireless power transmission (R-WPT) using radiated electromagnetic(EM) fields is presented. More specifically, the analysis and design of quasi-isotropic antennas, the analytical study on the optimal transmitting current, and the efficiency bounds are described. In addition, research on the comparison of the EM effects on the human phantom, and the effective implementation of the optimal current distribution are conducted. The research is described sequentially from the passive R-WPT to active R-WPT, which indicate the absence or presence of the power supplying base station.
First, research is conducted on the analysis and design of the passive R-WPT antenna. Considering the ambient environment, an antenna with quasi-isotropic pattern, electrically small size, and high efficiency is proposed. A split-ring resonator (SRR) that radiate quasi-isotropic pattern with electrically small size is used as a basic structure. The analysis on the SRR is well matched with the simulation results. Based on the analysis, folded split-ring resonator (FSRR) is proposed and designed for the passive R-WPT antennas, and verified through the measurement. A dualband and wideband FSRR that can harvest more ambient power is designed as an extended work. The proposed antennas are compared with recent studies showing superior performances. On the other hand, the receiving power of the passive R-WPT is very low due to low power density of ambient field, a study on the active R-WPT, which can transfer wireless powers from the base station to the mobile antenna, is conducted as a next step.
In the active R-WPT, a study on the way to effectively transfer wireless power to the mobile devices by using a transmitting tower is described. The optimal current distribution of the transmitting surface, and maximum power transfer efficiency (PTE) bounds when the transmitting area is limited are analytically derived. Through the results, it is possible to figure out the maximum efficiency bounds for the mid-range R-WPT and the optimal shape of transmission current distribution that could not be found by the conventional method.
The results indicate that the optimum current distribution on the transmitting surface and the maximum efficiency of radiative WPT depend on the radiating field pattern of the mobile antenna. To generalize the proposed theory, an additional analysis in lossy environment is carried out. The optimal transmitting current and efficiency bound in lossy media is found for a couple of examples. The results are compared with the previous works to verify the proposed theory. Based on the results in lossy media, the EM effects on the human body is investigated.
Lastly, research on the effective implementation of the theoretical current distribution as practical antenna arrays is described. Based on the previous research, two techniques that can effectively realize the ideal current are proposed in designing a thinned array. An optimization using genetic algorithm, and deterministic density tapering are applied to sample the theoretical current distribution. As a results, the proposed thinned arrays show improved performance compared to the same number of densely arranged regular arrays. In particular, the use of density tapering has advantages in cost, weight, efficiency than the same number of the regular array. In addition, it is possible to transmit wireless power with better efficiency even when the position of the receiver changes.Chapter 1. Introduction 1
1.1. Classification of Wireless Power Transmission 1
1.2. Separation of Regions 3
1.3. Passive and Active Radiative-Wireless Power Transmission 6
1.4. References 14
Chapter 2. Passive: RF Energy Harvesting Antenna 18
2.1. Motivation 18
2.2. Analytical Study on RF Energy Harvesting Antenna 19
2.2.1. Previous Research 19
2.2.2. Analysis on Split-Ring Resonator 21
2.2.3. Analysis on the Symmetric Folded Split-Ring Resonator 25
2.2.4. Analysis on the Asymmetric Folded Split-Ring Resonator 30
2.3. Design of RF Energy Harvesting Antenna 34
2.3.1. Antenna Design 37
2.3.2 Results and Discussion 44
2.4. Design of RF Energy Harvesting Antenna with Dual-band Operation 45
2.4.1. Motivation 45
2.4.2 Antenna Design 45
2.4.3. Results and Discussion 48
2.5. RF Energy Harvesting Antenna with Wide-band Operation 53
2.5.1. Motivation 53
2.5.2 Antenna Design 54
2.5.3. Results and Discussion 57
2.6. Conclusion 65
2.7. References 69
Chapter 3. Active: Radiative-WPT in Lossless Medium 73
3.1. Motivation 73
3.2. Previous Research 73
3.3. Theoretical Approach 77
3.3.1. Power Transfer Efficiency 77
3.3.2. Optimum Transmitting Current 80
3.3.3. Minimizing Transmitting Area 84
3.4. Numerical Examples 86
3.3.1. Dipole Antenna 88
3.3.2. Patch Antenna 90
3.3.3. Horn Antenna 91
3.5. Results and Discussion 93
3.5. Conclusion 98
3.6. References 99
Chapter 4. Active: Radiative-WPT in Lossy Media 103
4.1. Motivation 103
4.2. Previous Research 103
4.3. Theoretical Approach 106
4.3.1. Problem Formulation 108
4.3.2. Maximum Power Transfer Efficiency 110
4.4. Practical Examples 114
4.4.1. Planar Inverted-F Antenna 116
4.4.2. Half-Mode Cavity-Backed Antenna 120
4.5. Electromagnetic Human Exposure in Radiative WPT System 125
4.5.1. Motivation 125
4.5.2. Simulation Results 126
4.6. Conclusion 132
4.7. References 134
Chapter 5. Active: Implementation of Optimal Transmitting Current Distribution 138
5.1. Motivation 138
5.2. Theoretical Approach 139
5.2.1. Radiation Pattern Matching 139
5.2.2. Optimal Excitation Coefficient 141
5.2.3. Thinning of Transmitting Array 141
5.3. Implementation of the Optimal Current Sheet 145
5.3.1. Array Thinning using Genetic Algorithm 145
5.3.2. Results and Discussions 148
5.3.3. Array Thinning using Density Tapering 151
5.3.4. Results and Discussions 154
5.4. Conclusion 158
5.5. References 159Docto
The effects of eudurance exercise on expressionof myokines and tumor tissue in colon cancer-induced mice
ํ์๋
ผ๋ฌธ (๋ฐ์ฌ)-- ์์ธ๋ํ๊ต ๋ํ์ : ์ฒด์ก๊ต์ก๊ณผ, 2014. 2. ์ ํ์.A few studies have demonstrated that exercise induces the release of cytokines from contracting muscles. These muscle-derived cytokines are collectively named myokines. Skeletal muscle is the largest organ in the human body, as an endocrine organ, muscle tissue has had a central role in orchestrating metabolism of other organs. The researchers have found a link between muscle contraction and these myokines in the form of an exercise factor.
Recently accumulating evidence indicated that myokines may also play a role in cancer protection. It was shown that the contracting muscle by an acute exercise release humoral factors such as OSM, IL-10, SPARC that can inhibit cancer cell proliferation and induce cancer cell apoptosis.
Base on the prevailing literature, the purpose of the present study was to investigate the impact of long-term exercise on expression of cytokines in muscle, blood and tumor tissue, thus to examine whether exercise mediates independent protective effect against cancer through the release of anti-proliferative proteins from contracting muscles according to exercise intensity.
First, to identify the therapeutic effect of exercise, all mice at 6-wk old were injected AOM and were treated 3 cycles of DSS solution in drinking water to induce colon cancer. Then at 17-wk of old, mice of exercise groups performed treadmill exercise at different intensity (Low, Moderate, High) for 30 minutes, 5 days per week, during 12 weeks. Twenty-four hours after the last training session, all tissues were removed and blood samples were obtained. To analysis the effect of exercise, OSM and SPARC were evaluated in muscle, serum, and tumor tissue. Also related pro-apoptosis factor, caspase-3 in tumor tissue were analyzed. OSM was significantly overexpressed in exercise groups compare to controlsin gastrocnemius (p=.000), serum (p=.005), and tumor tissue (p=.000). Also, there was significant differences among exercise groups by exercise intensity on expression of OSM in colon-induced mice. The expression of OSM tends to increase in higher intensity in gastrocnemius (p=.000)LIE (p= .014), MIE (p=.000), HIE (p=.000), in tumor tissue (p=.000)LIE (p= .000), MIE (p=.000), HIE (p=.000), but only in serum of LIE (p=.000). The level of SPARC was significantly increased by exercise in muscle (p=.000), serum (p=.002), tumor tissue (p=.001) compare to controls. Also the expression of SPARC tends to increase in higher intensity in gastrocnemius (p=.001)LIE (p= .035), MIE (p=.001), HIE (p=.007), in tumor tissue (p=.000)MIE (p=.000), HIE (p=.000). The expression of caspase-3 increased significantly in MIE (p=.045).
Secondly, to identify the preventive effect of exercise on colon cancer-induced mice, mice of exercise groups, at 6-wk of old, performed exercise at different intensity (Low, Moderate, High) for 30 minutes, 5 days per week, during 12 weeks. At 17-wk of old, all mice were injected AOM and were given 3 cycles of DSS solution in drinking water to induce colon cancer. Then they kept doing exercise for another 12 weeks. The level of OSM in muscle was significantly overexpressed in exercise groups compare to controls, however, not in blood and tumor tissue (p>.05). Also, there was significant differences among exercise groups by exercise intensity on expression of OSM in muscle. The expression of LIE (p=.001) and MIE (p=.000) were significantly increased than controls. However, the expression of OSM in blood was not increased by exercise intensity (p>.05). In the same time, the level of OSM in tumor tissue tends to increase by exercise intensity, but there was no statistical difference (p>.05). The level of SPARC was significantly increased by exercise in blood (p=.002), tumor tissue (p=.001) compare with controls, however, there was no significant difference in muscle (p>.05). However, the expression of SPARC in MIE was significantly higher than CON in gastrocnemius (p=.010). Also the expression of SPARC in tumor tissue tends to increase significantly by exercise intensityMIE (p=.001), HIE (p=.000). Even though the expression of cleaved caspase-3 in tumor tissue tends to increase by exercise intensity, there was no statistical difference (p>.05).
In conclusion, this study showed that exercise induced the expression of OSM and SPARC in several tissues by exercise stimulus, which is associated with inducing apoptosis in tumor cells. And the magnitude of OSM and SPARC induction in muscle and tumor tissue was relatively higher in moderate and high intensity exercise groups than low intensity exercise group. Moreover, moderate and high intensity exercise enhanced anti-apoptotic pathway in skeletal muscle, and increased gastrocnemius muscle weight. In addition, it is observed that the number of polyp generation in moderate and high intensity exercise group was significantly decreased than controls. Thus, the results of this study possibly suggest that moderate and high intensity exercise have more protective effect for colon cancer induced mice.CONTENTS
ABSTRACT i
CONTENTS iv
LIST OF TABLES vi
LIST OF FIGURES vii
LIST OF ABBREVIATIONS ix
I. INTRODUCTION 1
II. LITERATURE REVIES 4
2.1. Cancer and physical activity 4
2.1.1. The incidence of cancer in Korea 4
2.1.2. Physical activity and colon cancer 5
2.2. Chronic inflammation-derived colon tumor mice 6
2.3. Myokines 8
2.3.1 Interleukin-6 9
2.3.2 Interluekin-8 10
2.3.3 Interluekin-15 11
2.4. Exercise-induced myokines in cancer cell 12
2.4.1. Oncostatin M 12
2.4.2. SPARC (Secreted protein acidic and rich in cysteine) 13
2.5. Apoptosis in colon cancer-induced mice 13
2.5.1. Mechanism of apoptosis 13
2.5.2. Caspase-3 in apoptosis 14
2.5.3. Muscle apoptosis in cancer model 15
2.5.4. Exercise effects on apoptosis in muscle 15
III. Material and Method 17
3.1. Animals and treatments 17
3.2. Experimental design 18
3.2.1. The first experiment 18
3.2.2. The second experiment 20
3.3. Exercise protocol 22
3.4. Tissue Collection 23
3.5. Polyp counts 23
3.6. Western blot 23
3.7. ELISA 24
3.8. Statistical analysis 24
IV. RESULTS 25
4.1. The first experiment 25
4.1.1. The change of body weight 25
4.1.2. Muscle weight 27
4.1.3. Colon weight 29
4.1.4. Polyp incidence 30
4.1.5. Correlation of muscle weight and polyp number 31
4.1.6. Muscle apoptosis 32
4.1.7. The expression of OSM 34
4.1.8. The expression of SPARC 38
4.1.9. The expression of caspase-3 in tumor tissue 42
4.2. The second experiment 43
4.2.1. Relative risk of premature mortality 43
4.2.2. The change of body weight 45
4.2.3. Muscle weight 46
4.2.4. Muscle apoptosis 48
4.2.5. The expression of OSM 50
4.2.6. The expression of SPARC 54
4.2.7. The expression of cleaved caspase-3 58
V. Discussion & Conclusion 59
REFERENCES 66
ABSTRACT IN KOREAN 74Docto
๋์ถ๋ฅ ์ ํธ์์ ๋ถ์ํ์ผ์ ์ง๋ ๋ฉ์ปค๋์ฆ์ ๊ดํ ์์น์ ์ฐ๊ตฌ
Thesis (doctoral)--์์ธ๋ํ๊ต ๋ํ์ :๊ธฐ๊ณํญ๊ณต๊ณตํ๋ถ,2004.Docto
์ฐ๋ฃ์ฐํ์ ์ 2์ฐจ์ ํผํฉ์ธต์์ ์ผ์งํ์ผ์ ์ ํ ํน์ฑ์ ๊ดํ ์์นํด์
ํ์๋
ผ๋ฌธ(์์ฌ)--์์ธ๋ํ๊ต ๋ํ์ :๊ธฐ๊ณ๊ณตํ๊ณผ,2000.Maste
๋ง๊ฒฐํฉํ ํ๊ธฐ์ฑ ์ํ์์คํ ์์ ๋ง์ค์ผ ๊ฐ์๋ฅผ ์ํ ์ ์ฌ๋ผ์ดํธ์ ์์ฉ์ ๊ดํ ์ฐ๊ตฌ
ํ์๋
ผ๋ฌธ(์์ฌ)--์์ธ๋ํ๊ต ๋ํ์ :๊ณต์
ํํ๊ณผ,1998.Maste
ํ๋ ํ๊ตญ์ฌํ์ ์ ์๊ดํ์ผ๋ก ๋ณธ ๋ถ๋ถ๊ด๊ณ์ ์๋ ์ ์๋ฏธ
ํ์๋
ผ๋ฌธ(์์ฌ) --์์ธ๋ํ๊ต ๋ํ์ :์ธ๋ฅํ๊ณผ,2006.Maste
(The) Effect of Combined Exercise Program on Health-related Physical Fitness in Obese Middle-aged Women
ํ์๋
ผ๋ฌธ(์์ฌ) --์์ธ๋ํ๊ต ๋ํ์ :์ฒด์ก๊ต์ก๊ณผ,2009.8.Maste
์์ด์ฆ ์บ ํ์ธ์์ ๋ฉ์์ง์ ์ค๋์ ํจ๊ณผ์ ์ํฅ์ ๋ฏธ์น๋ ์์ธ
ํ์๋
ผ๋ฌธ(์์ฌ) --์์ธ๋ํ๊ต ๋ณด๊ฑด๋ํ์ :๋ณด๊ฑดํ๊ณผ(๋ณด๊ฑด์ ์ฑ
๊ด๋ฆฌํ์ ๊ณต),2010.2.Maste