2 research outputs found

    연속적 이쀑거동을 ν•˜λŠ” μ „κ°œν˜• 접이식 μ†Œν”„νŠΈ λ‘œλ΄‡

    No full text
    ν•™μœ„λ…Όλ¬Έ(박사) -- μ„œμšΈλŒ€ν•™κ΅λŒ€ν•™μ› : κ³΅κ³ΌλŒ€ν•™ 기계항곡곡학뢀, 2022.2. μ‘°κ·œμ§„.λ³Έ λ…Όλ¬Έμ—μ„œλŠ” μœ μ—°μž¬λ£Œλ‘œ λ§Œλ“  μ „κ°œν˜• 쒅이접기 ꡬ쑰λ₯Ό κ°œλ°œν•˜κ³  이λ₯Ό μ „κ°œ 및 μΆ”κ°€ λ™μž‘μ΄ κ°€λŠ₯ν•œ μ†Œν”„νŠΈ λ‘œλ΄‡μœΌλ‘œ ν™œμš©ν•˜λŠ” 연ꡬ듀을 κΈ°μˆ ν•˜μ˜€λ‹€. μ „κ°œν˜• 쒅이접기 κ΅¬μ‘°λŠ” μš΄λ™ν•™μ μœΌλ‘œ μ •μ˜λœ λ³€ν˜•μ„ μ ‘νž˜ 및 펴짐으둜 κ΅¬ν˜„ν•œλ‹€. κ°œλ°œν•œ μœ μ—° μ „κ°œν˜• 쒅이접기 κ΅¬μ‘°λŠ” 쒅이접기 κΈ°μ‘΄ κ°€λ™λ²”μœ„μ— λ”ν•˜μ—¬ μœ μ—°μž¬λ£Œμ˜ 신좕에 μ˜ν•œ κ°€λ™λ²”μœ„λ₯Ό μ§€λ‹ˆκ²Œ λœλ‹€. 이에 곡압 ꡬ동을 κ°€λŠ₯μΌ€ν•˜λ©΄ μΈκ°€ν•˜λŠ” μ••λ ₯에 따라 μ ‘νž˜ 및 νŽ΄μ§μ— μ˜ν•œ 가동과 μœ μ—°μž¬λ£Œμ˜ 신좕에 μ˜ν•œ 가동을 μœ μ‚¬-μ—°μ†μ μœΌλ‘œ κ±°μΉ˜λ„λ‘ μœ λ„λ  수 μžˆλ‹€. κ°œλ°œν•œ 섀계 기법은 크게 2κ°€μ§€λ‘œ, 접이식 ꡬ쑰의 펴짐과 μœ μ—°μž¬λ£Œμ˜ 인μž₯을 각각 ν™œμš©ν•˜λŠ” 이쀑-λͺ¨ν•‘(Dual-morphing) 섀계 원리와 접이식 ꡬ쑰의 νŽ΄μ§μ— 차이λ₯Ό μ£ΌλŠ” 이쀑-쒅이접기(Dual-origami) 섀계 원리가 μžˆλ‹€. 심해에 μ„œμ‹ν•˜λŠ” 물고기인 펠리컨 μž₯μ–΄ (ν•™μˆ λͺ… Eurypharynx pelecanoides)의 머리뼈λ₯Ό μ „κ°œν•œ λ’€ ν”ΌλΆ€λ₯Ό λŠ˜μ΄λŠ” λ…νŠΉν•œ κ±°λ™μ—μ„œ μ˜κ°μ„ μ–»μ–΄ μ’…μ΄μ ‘κΈ°μ˜ 펴짐과 고인μž₯ μ—˜λΌμŠ€ν† λ¨Έ 재료 ν‘œλ©΄μ˜ λŠ˜μ–΄λ‚¨μ„ μœ μ‚¬-μ—°μ†μ μœΌλ‘œ κ΅¬ν˜„ν•˜λŠ” 이쀑-ꡬ동 쒅이접기 ꡬ쑰λ₯Ό κ°œλ°œν•˜μ˜€λ‹€. κ°œλ°œν•œ κ΅¬μ‘°λŠ” 전체가 λŠ˜μ–΄λ‚  수 μžˆλŠ” 쒅이접기 λ‹¨μœ„λ‘œ 유체 λ„€νŠΈμ›Œν¬(fluid networks)κ°€ κ΅¬μ„±λ˜μ–΄ μžˆλ‹€. 이쀑-λͺ¨ν•‘μ˜ νŠΉμ§•μΈ μœ μ‚¬-연속 ꡬ동은 유체 ꡬ쑰 및 재료적으둜 μ„€κ³„λœ 유체 λ„€νŠΈμ›Œν¬μ— μœ μ••μ΄ λͺΈμ²΄μ˜ μ „κ°œλ₯Ό μš°μ„ μ μœΌλ‘œ ν•˜λŠ” λ°©ν–₯으둜 μž‘λ™ν•˜μ—¬ λ‚˜νƒ€λ‚˜κ²Œ λœλ‹€. κ°œλ°œν•œ 섀계 기법을 ν™•μΈν•˜κΈ° μœ„ν•΄, 펠리컨 μž₯μ–΄λ₯Ό λͺ¨μ‚¬ν•˜λŠ” 인곡 생물을 μ œμž‘ν•˜μ˜€κ³  이쀑-λͺ¨ν•‘ νŠΉμ„±μ„ μœ μ‚¬ν•˜κ²Œ 함을 ν™•μΈν•˜μ˜€λ‹€. 이쀑-λͺ¨ν•‘ 쒅이접기 셀을 기쑴의 쒅이접기 ꡬ쑰에 μ μš©ν•˜μ—¬ μ „κ°œ κ°€λŠ₯ν•œ 그리퍼, 크둀러, 그리고 μˆ˜μ€‘ λ‘œλ΄‡μ„ κ°œλ°œν•˜μ˜€λ‹€. λ‚˜μ•„κ°€ ν•˜λ‚˜μ˜ 적용 μ‚¬λ‘€λ‘œ, 이쀑-λͺ¨ν•‘ ꡬ쑰 쀑 μš”μ‹œλ¬΄λΌ 쒅이접기 싀린더 (Yoshimura origami cylinder)λ₯Ό ν™œμš©ν•œ μ†Œν”„νŠΈ 곡압 ꡬ동기λ₯Ό κ°œλ°œν•˜μ˜€λ‹€. κ°œλ°œν•œ μ „κ°œκ°€λŠ₯ν•œ μ†Œν”„νŠΈ 곡압 ꡬ동기 (D-PneuNets actuator)λŠ” μΈκ°€λœ 곡압에 μ˜ν•΄ 곡압 챔버듀이 높이방ν–₯으둜 μžλΌμ„œ λͺ¨λ©˜νŠΈ 암을 ν‚€μšΈ 수 μžˆμ–΄, λ‚Ό 수 μžˆλŠ” 힘과 ꡬ동기 λΆ€ν”Όμ˜ νŠΈλ ˆμ΄λ“œ-μ˜€ν”„ 관계λ₯Ό 극볡할 수 μžˆλ‹€. λ˜ν•œ, μ „κ°œκ°€λŠ₯ν•œ μ†Œν”„νŠΈ 곡압 ꡬ동기λ₯Ό ν™œμš©ν•˜λŠ” 곡간 효율적인 μ°©μš©ν˜• λ‘œλ΄‡ μž₯갑을 κ°œλ°œν•˜μ˜€λ‹€. 이쀑-쒅이접기(Dual-origami) 섀계 μ›λ¦¬λŠ” κ³΅μ••μœΌλ‘œ κ΅¬λ™λ˜λŠ” 쒅이접기 ꡬ쑰와 쒅이접기 λ ˆμ΄μ–΄λ₯Ό μ—°κ²°ν•˜μ—¬ μ„€κ³„ν•œ κ²ƒμœΌλ‘œ, 두 쒅이접기 ꡬ쑰의 νŽ΄μ§€λŠ” 길이 차이λ₯Ό μ΄μš©ν•˜μ—¬ μ „κ°œ 및 ꡽힘의 μœ μ‚¬-연속ꡬ동을 κ΅¬ν˜„ν•œλ‹€. 고인μž₯ μ—˜λΌμŠ€ν† λ¨Έμ— λΉ„ν•΄ 비ꡐ적 강성이 높은 재료λ₯Ό μ‚¬μš©ν•˜κ³  재료의 인μž₯을 ν™œμš©ν•˜μ§€ μ•ŠμœΌλ―€λ‘œ μƒλŒ€μ μœΌλ‘œ 높은 νž˜μ„ λ‚Ό 수 있으며 μ €κ°€ν˜• FDM(Fused Deposition Modeling) 3D ν”„λ¦°ν„°λ‘œ κ°„λ‹¨ν•œ μ œμž‘μ΄ κ°€λŠ₯ν•˜λ‹€. 두 쒅이접기 ꡬ쑰의 거동차이λ₯Ό μ„€κ³„ν•˜μ—¬ μ „κ°œμ™€ ꡽힘의 비쀑을 μ‘°μ ˆν•  수 μžˆλ‹€. 이λ₯Ό ν™œμš©ν•˜μ—¬ κ°œλ°œν•œ μ „κ°œν˜• μ†Œν”„νŠΈ κ·Έλ¦¬νΌλŠ” 힘, 섬세함, μ •ν™•μ„±, 그리고 민첩함을 μš”κ΅¬ν•˜λŠ” νŒŒμ§€ 업무λ₯Ό μˆ˜ν–‰ν•  수 있으며, μ ‘ν˜€ μžˆλŠ” μƒνƒœμ˜ 높은 곡간 νš¨μœ¨μ„±μ€ 물리적 간섭없이 ν‘μž… μ»΅ 그리퍼와 ν•¨κ»˜ μ‚¬μš©ν•  수 μžˆλ„λ‘ ν•˜μ˜€λ‹€. λ³Έ ν•™μœ„λ…Όλ¬Έμ—μ„œ κ°œλ°œν•œ μ „κ°œν˜• 쒅이접기 ꡬ쑰의 섀계 기법듀은 μ†Œν”„νŠΈ λ‘œλ΄‡μ„ μ‚¬μš©ν•˜μ§€ μ•Šμ„ λ•Œμ˜ μž‘μ€ ν˜•νƒœμ—μ„œ μ‚¬μš©μ‹œ μ „κ°œ ν›„ κΈ°λŠ₯적인 λ™μž‘μ„ κ°€λŠ₯ν•˜κ²Œ ν•˜λŠ” 섀계 지침을 μ œκ³΅ν•˜μ—¬, κ³ λ„ν™”λœ μ°¨μ„ΈλŒ€ μ†Œν”„νŠΈ λ‘œλ΄‡ μ‹œμŠ€ν…œμ— 적용될 수 μžˆμ„ κ²ƒμœΌλ‘œ κΈ°λŒ€λœλ‹€.In this thesis, development of deployable origami structures made of soft and flexible materials, and their soft robotic applications capable of deployment and additional motion (e.g., bending, inflating) are presented. The deployable origami structures produce the kinematically defined deployment by folding and unfolding. The developed soft deployable origami structures have additional range of motion due to the flexibility of the materials in addition to the kinematic deployment. By enabling pneumatic actuation, the soft deployable structures can be guided to undergo quasi-sequential unfolding and additional motion of soft material. Two design methods are developed: the dual-morphing design method that utilizes the unfolding of the foldable structure and the stretching of soft materials, respectively, and the dual-origami design method that utilizes the asymmetric unfolding of origami structures. Inspired by a peculiar motion of a pelican eel (Eurypharynx pelecanoides) that first unfolds its mouth and then inflates it, the dual-morphing structures that embody quasi-sequential behaviors of origami unfolding and skin stretching in response to fluid pressure were developed. In the proposed system, fluid paths are enclosed and guided by a set of entirely stretchable origami units. The dual-morphing feature arises from this geometric and elastomeric design of fluid networks in which fluid pressure acts in the direction that the whole body deploys first, resulting in quasi-sequential dual-morphing response. To verify the effectiveness of our design rule, an artificial creature mimicking a pelican eel and reproduced biomimetic dual-morphing behavior is built. By compositing the basic dual-morphing unit cells into conventional origami frames, unprecedented architectures of soft machines that exhibit deployment-combined adaptive gripping, crawling, and large range of underwater motion are demonstrated. Furthermore, as an application, a soft bending actuator that using dual-morphing Yoshimura origami cylinder structures is developed. In response to applied pressure, the deployable soft pneumatic bending actuator (D-PneuNets actuator) can increase the moment arm due to the deployment of the origami chambers, thus overcoming the trade-off relationship between the output force and the bulkiness. A robotic soft glove using D-PneuNets actuator with space-efficient advantage was also developed. The dual-origami design method is to superimpose a pneumatic-driven origami structure and an origami strain-limiting layer, to produce a quasi-sequential deployment and bending motion that is guided by unsymmetric unfolding of two origami components. The dual-origami structure is made of flexible materials with high stiffness compared to highly stretchable elastomers, thus produces relatively high force and can be easily fabricated using low-cost FDM (Fused Deposition Modeling) 3D printer. The dominance between the deployment and bending can be shifted by varying the unfolding behavior, enabling pre-programming of the motion. Finally, soft gripper applications are presented: they successfully demonstrate gripping tasks that each requires strength, delicacy, precision and dexterity, and the high compactness when folded enables cooperation with a suction gripper without physical interference. The design methods of deployable soft origami presented in this thesis provide guidelines that enable initially small soft robots but can be deployed to be functional, and they are expected to be applied to advanced next-generation soft robot systems.Chapter 1 Introduction 1 1.1 Motivation 1 1.1.1 Soft Robots 1 1.1.2 Origami-inspired Engineering in Soft Robotics 2 1.2 Research Overview 4 Chapter 2 Deployable Origami Architectures 8 2.1 Miura Origami Polyhedron 8 2.2 Yoshimura Origami Cylinder 9 2.2 Origami Fish Base 11 Chapter 3 Bioinspired Dual-morphing Stretchable Origami (SOrigami) 16 3.1 A Dual-morphing Behavior of the Pelican-eel 18 3.2 Working Principle of SOrigami 19 3.2.1 Pelican-eel-inspred Dual-morphing Stretchable origami 19 3.2.2 Comparison Between SOrigami and Conventional Origami 22 3.2.3 2D Pseudo Rigid Body Modeling 25 3.3 Bio-mimicking dual-morphing pelican-eel origami 29 3.4 Dual-morphing Miura Origami 33 3.4.1 Pelican-eel-inspred Dual-morphing Stretchable origami 33 3.4.2 Definition of the Module, Deployment Ratio (Ξ») and Angle (Ο•) of the Dual-morphing M-ori. 37 3.4.3 Parametric Study 39 3.4.4 Soft Robotic Applications of Dual-morphing M-ori 48 3.5 Dual-morphing Yoshumura Origami (Y-Ori) 52 3.5.1 Design of Y-ori 52 3.5.2 Y-ori Deployable Caging Gripper 52 3.6 Materials and Methods 57 3.6.1 Materials for SOrigami 57 3.6.2 Layer Stacking Method for Fabrication 58 3.6.3 Experiment, Simulation and Analysis 62 3.7 Discussion 64 Chapter 4 Application: Deployable Soft Pneumatic Networks (D-PneuNets) Actuator with Dual-morphing Origami Chambers 66 4.1 Design of the D-PneuNets Actuator 68 4.2 Characterization of the Actuator 71 4.2.1 Concept Validation 71 4.2.2 Characterization of the Behavior 74 4.2.3 Dual-material Yoshimura Origami Cylinder Chamber 80 4.3 Robotic Soft Glove Using D-PneuNets Actuators 83 4.4 Fabrication of D-PneuNets Actuators 87 4.5 Discussion 91 Chapter 5 A Dual-origami Design for Soft Robots 94 5.1 Motivation: Drawbacks of the Dual-morphing Principle 95 5.2 Design and Working Principle 98 5.2.1 Dual-origami Components 98 5.2.2 Quasi-sequential Deployment and Bending Motion 99 5.3 Pre-programming of the Motion 106 5.3.1 Simplified Kinematic Model 106 5.3.2 Pre-programming Method 111 5.4 Force Estimation: Simplified Pseudo rigid Body Model 116 5.5 3D Printing and Heat Treatment of Dual-origami Soft Fluidic Bending Actuator 123 5.6 Materials and Methods 126 5.6.1 Characterization and Measurement 126 5.6.2 Finite Element Analysis 127 5.6.3 3D Printing Process and Materials 127 5.7 Discussion 128 Chapter 6 Application: Soft Gripper Using Dual-oriagmi Origami Actuators 131 6.1 Design of the Gripper 131 6.2 Characterization of the Gripper 134 6.3 Development of a Versatile Soft Gripper 137 6.4 Gripper Cusomized for Box-shaped Objects 141 6.5 Discussion 143 Chapter 7 Conclusion 144 Bibliography 145 ꡭ문초둝 163λ°•
    corecore