3 research outputs found
์ฐจ์ธ๋ ํญ๊ณต ์ด์ก ์ธํ๋ผ๋ฅผ ์ํ ๋จ์ผ DME ์คํ ์ด์ ๊ธฐ๋ฐ 3์ฐจ์ ์์น ๊ฒฐ์ ์์คํ
ํ์๋
ผ๋ฌธ (์์ฌ)-- ์์ธ๋ํ๊ต ๋ํ์ : ๊ธฐ๊ณํญ๊ณต๊ณตํ๋ถ, 2013. 2. ๊ธฐ์ฐฝ๋.๋ณธ ๋
ผ๋ฌธ์์๋ ์์ฑํญ๋ฒ์์คํ
(Global Navigation Satellite System)์ ์ฌ์ฉํ ์ ์๋ ์ํฉ์์ ํญ๊ณต๊ธฐ์ ๊ฒฝ์ ์ฑ๊ณผ ์์ ์ฑ์ ๋ณด์ฅํ๊ณ , ์์ผ๋ก ๊ณ์ ์ฆ๊ฐํ ๋ฏธ๋ ํญ๊ณต ์ด์ก๋์ ๋ํ ๋๋น๋ฅผ ์ํ ๋์ฒด ํญ๋ฒ(Alternate Positioning Navigation and Timing)์ ๊ดํ ์ฐ๊ตฌ๋ฅผ ์งํํ์๋ค.
ํ์ฌ ๋์ฒดํญ๋ฒ์ ๋ฏธ์ฐ๋ฐฉํญ๊ณต์ฒญ(FAA)๊ฐ ์ฃผ๋ํ๋ NextGen์ด๋ผ๋ ์ฐจ์ธ๋ ํญ๊ณต์ดํญ ํ๋ก๊ทธ๋จ ๋ด์ ํฌํจ๋์ด ์์ผ๋ฉฐ, ๋์ฒดํญ๋ฒ์ ํด๊ฒฐ์ฑ
์ผ๋ก์จ ๋ช๋ช ๋์๋ค์ ๋ํ ์ฐ๊ตฌ๊ฐ ์งํ๋๊ณ ์๋ค. DME(Distance Measuring Equipment)๋ฅผ ์ด์ฉํ ์ฐ๊ตฌ๋ค์ด ์ฃผ๋ฅผ ์ด๋ฃจ๋ฉฐ, ๊ทธ ์ค DMPR(DME Passive Ranging)์ ๋ํ ์ฐ๊ตฌ๊ฐ ๊ฐ์ฅ ํ๋ฐํ๊ฒ ์งํ๋๊ณ ์์ง๋ง, ์์น ๊ฒฐ์ ์ 2๊ฐ ํน์ 3๊ฐ์ ์คํ
์ด์
์ด ํ์ํ๊ณ , ๊ฐ ์คํ
์ด์
๊ฐ์ ์๊ฐ ๋๊ธฐ๊ฐ ํ์์ ์ด๊ธฐ ๋๋ฌธ์ ์ด ๋ถ๋ถ์ ๋ํ ์ถ๊ฐ์ ์ธ ์ฐ๊ตฌ์ ๋น์ฉ์ ๋ํด ๊ฒํ ๋๊ณ ์๋ ์ํฉ์ด๋ค.
๋ณธ ๋
ผ๋ฌธ์์ ์ ์ํ๋ MOSAIC/DME์์คํ
์ ๊ธฐ์กด์ DME์์คํ
์ ์์ฌ์์ฑ๊ณผ ์ ์ฌํ ๋ค์์ MOSAIC์ํ
๋๋ฅผ ์ถ๊ฐ์ ์ผ๋ก ์ฅ์ฐฉํ์ฌ ๋จ๋ฐฉํฅ ์ฐ์์ ํธ๋ฅผ ๋ฐฉ์กํ๋๋ก ํ์๋ค. ์ด ๊ฒฝ์ฐ ์ฅ์ ์ผ๋ก๋ ํ๋์ ์คํ
์ด์
์์ ํด๋ญ์ ๊ณต์ ํ๊ธฐ ๋๋ฌธ์ ๋ชจ๋ ์ ํธ๊ฐ ๋๊ธฐ ๋์ด ์๋ค๋ ๊ฒ๊ณผ ํ๋์ ์คํ
์ด์
๋ง์ผ๋ก 3์ฐจ์ ์์น ๊ฒฐ์ ์ด ๊ฐ๋ฅํด์ ธ ์ค์ ๊ฐ์ฉ์์ญ์ด ๋์ด์ง ์ ์๋ค๋ ์ ์ด๋ค. ๋ํ DME์ ํธ๋ ๊ธฐ์กด์ ๋ฐฉ๋ฒ๊ณผ ๋์ผํ๊ฒ ๋์ํ๋ฏ๋ก, ๊ธฐ์กด์ DME์์ ํธํ์ฑ์ด ๋ณด์ฅ๋๋ฉฐ, ์๋ฐฉํฅ ์ ํธ์ ๋จ๋ฐฉํฅ ์ ํธ๋ฅผ ๋์์ ์ฌ์ฉํ๋ฏ๋ก ์คํ
์ด์
์ ํญ๊ณต๊ธฐ ์์ฉ๋ฅ๋ ฅ ์ญ์ ์ฆ๊ฐํ๋ฆฌ๋ผ ๊ธฐ๋ํ ์ ์๋ค.
ํ๋์ ์คํ
์ด์
์์ ์์น ๊ฒฐ์ ์ ์ํํ ๊ฒฝ์ฐ, ๊ธฐํํ์ ์ผ๋ก ๋ฐฐ์น๊ฐ ์ข์ง ์๊ธฐ ๋๋ฌธ์ ์์น ์ ํ๋๊ฐ ๋งค์ฐ ๋ฎ์ผ๋ฆฌ๋ผ ์์๋๋ค. MOSAIC/DME ์์คํ
์์๋ ์ด๋ฌํ ๋ฌธ์ ์ ์ ํด๊ฒฐํ๊ธฐ ์ํด, ์ธก์ ์น๋ก์ ๋ฐ์กํ ์์์ ์ฌ์ฉํ๊ฒ ๋๋ค. ํ์ง๋ง ์ผ๋ฐ์ ์ผ๋ก ๋ฐ์กํ ์์ ์ธก์ ์น๋ฅผ ์ฌ์ฉํ๋ ๊ฒฝ์ฐ ํ์ฅ๊ธธ์ด์ ๋ฏธ์ง์ ์ ํญ์ด ์ถ๊ฐ๋์ด ์ค์ง์ ์ผ๋ก ์์น๊ณ์ฐ ์ํ์ด ๋ถ๊ฐ๋ฅํ๊ฒ ๋๋ค. ์ฌ๊ธฐ์ ์ด ๋ฏธ์ง์ ์ ํญ์ ํด๊ฒฐํ๊ธฐ ์ํด MOSAIC๊ฐ๋
์ ์ฌ์ฉํ๊ฒ ๋๋ค. ๊ธฐ๋ณธ MOSAIC๊ฐ๋
์ ์ํ
๋๊ฐ ๊ฐ๊ฒฉ์ด ๋ฐ ํ์ฅ ์ด๋ด์ผ ๋ ๋ฏธ์ง์ ์๋ฅผ ๋ฐ๋ก ๊ฒฐ์ ํ ์ ์๊ฒ ๋๋ค. ํ์ง๋ง ํญ๊ณต๊ธฐ์ ์ฌ์ฉํ ์ ์์ ์ ๋์ ์ ํ๋๋ฅผ ์ป๊ธฐ ์ํด์๋ ์ํ
๋ ๊ฐ์ ๊ฐ๊ฒฉ์ด ์ผ์ ๋ฒ์ ์ด์ ๋ ํ์๊ฐ ์์ผ๋ฏ๋ก, ์ด ๋์๋ ํ์ฅ๋ MOSAIC ๊ฐ๋
์ ์ ์ฉํ๊ฒ ๋๋ค. ํ์ฅ๋ MOSAIC๊ฐ๋
์ ๋ฐ๋ฅด๋ฉด MOSAIC/DME์์คํ
์ ๋ฏธ์ง์ ์๋ ๊ธฐํํ์ ์ผ๋ก ์ ํ๋์ด ์๊ธฐ ๋๋ฌธ์, ๊ธฐ์กด์ CDGPS(Carrier-phase Differential GPS)์๋ ๋ค๋ฅด๊ฒ ์ฝ๊ฒ ๋ฏธ์ง์ ์๋ฅผ ํด๊ฒฐํ ์ ์๋ค.
์ค์ ์์น๋ฅผ ๊ฒฐ์ ํ๋ ๊ณผ์ ์ LSAST(Least Square Ambiguity Search Technique)๊ธฐ๋ฒ์ ์ด์ฉํ์ฌ, ๋งค ์์ ๋ง๋ค ๊ฐ์ค์ต์์์น๋ฒ(Weighted Least Square Solution) ๊ณ์ฐ์์ผ๋ก ์์น๋ฅผ ๊ณ์ฐํ๋ค. ๋ฏธ์ง์ ์ ๊ฒฐ์ ๊ณผ์ ์ LSAST์์ ์ด์ฉํ๋ Residual Threshold Test์ Ratio Test๋ฅผ ์ํํ๋ฉฐ, ์ฌ๊ธฐ์ MOSAIC/DME์์คํ
์ ํน์ง์ ์ด์ฉํ ํ๋ ฌ ํน์ด์ฑ ํ์ธ, ์๋ ด์ฑ ํ์ธ, ๊ณ ๋์ ํ, AHRS(Attitude Heading Reference System)์ ์ด์ฉํ ํ์ธ ๋ฐฉ๋ฒ๋ค์ ์ด์ฉํ์ฌ ๋ฏธ์ง์ ์๋ฅผ ๊ฒฐ์ ํ๊ฒ ๋๋ค.
MOSAIC/DME์์คํ
์ ์ ํ๋ ํน์ฑ๊ณผ ๋ฏธ์ง์ ์ ๊ฒฐ์ ๊ฒ์ฆ์ ์ํด ๋ชฌํ
์นด๋ฅผ๋ก ์๋ฎฌ๋ ์ด์
์ ์ํํ ๊ฒฐ๊ณผ, ์ด ์์คํ
์ด ๋์ฒดํญ๋ฒ์์ ์๊ตฌํ๋ ์ ํ๋๋ฅผ ๋ชจ๋ ๋ง์กฑํ๋ ์ฌ์ค์ ํ์ธํ ์ ์์์ผ๋ฉฐ, ๋ฏธ์ง์ ์์ ๊ฒฝ์ฐ์๋ ๋๋ถ๋ถ 20์ด ๋ด์ ํด๊ฒฐ๋๊ณ , ํ์ฌ์ ์๋ฎฌ๋ ์ด์
ํ๊ฒฝ์์๋ ์ต๋ 1๋ถ ๋ด์ ๋ชจ๋ ํ๋ฆฌ๋ ๊ฒ์ ํ์ธํ์๋ค.
๋ณธ ๋
ผ๋ฌธ์์๋ MOSAIC/DME์์คํ
์ ๋ํด ๊ฐ๋
์ ์ธ ํฐ ๊ทธ๋ฆผ์ ๋จผ์ ์ ์ํ๊ณ , ์ด ์ค ์ ํ๋ ๋ถ๋ถ๊ณผ ๋ฏธ์ง์ ์ ๊ฒฐ์ ๋ถ๋ถ์ ๋ํด ์ค์ ์ ์ผ๋ก ๋ค๋ฃจ์๋ค. ์์ผ๋ก๋ ์ฐ๊ตฌ๋ฅผ ์งํํ๋ฉด์, ์ค์ ์์คํ
์ ๊ตฌํ์ ์ํด์๋ ๋ฏธ์ง์ ์ ๊ฒฐ์ ๊ฐ์ , ๋ค์ํ ์ค์ฐจ๋ฅผ ํฌํจํ ์๋ฎฌ๋ ์ด์
, ํญ๊ณต๊ธฐ ์์ฉ๋ฅ๋ ฅ ๊ฒ์ฆ, ์ ํธ ๊ท๊ฒฉ, ๋ฉ์์ง ํ์
, ๋ฌด๊ฒฐ์ฑ, ์ํ
๋ ๋ฐฐ์น, ๋ค์ค ์คํ
์ด์
์ ์ด์ฉํ์ ๊ฒฝ์ฐ์ ์ฑ๋ฅ ๊ฒ์ฆ ๋ฑ์ ์ถ๊ฐ์ ์ผ๋ก ์งํํ ํ์๊ฐ ์๋ค.Next Generation Air Transport System (NextGen) is a program ready for the future aircraft traffic developed by US Federal Aviation Administration (FAA). Alternate Positioning Navigation and Timing (APNT), a part of NextGen, is a developing solution for the continuity and safety of air services when Global Navigation Satellite System (GNSS) is unavailable.
As a solution for APNT, there are candidates being researched. Some of them utilize the Distance Measuring Equipment (DME) which is a conventional terrestrial system at the present time. DME Passive Ranging (DMPR) using pseudolite-like signals is one of them, which is the most actively researched. DMPR is, however, at least two or three stations are required for the positioning, and time synchronization between stations are essential because of one-way continuous signals. Nowadays, additional research and costs for time-sync are considered.
MOSAIC/DME system presented in this paper is a single station based 3D positioning system. Additional multiple pseudolite-like MOSAIC antennas broadcasting one-way continuous signal are installed together with conventional DME. This one station based system makes it possible for time synchronization between signals because all signal generators can share the clock source. And it is also possible for 3D positioning using only one station to extend the usable coverage. As DME antenna itself operates without any change with current system, compatibility is proved. And two types of signals, one-way and two-way, are both used, so it is expected that aircraft traffic capacity also can be improved.
Positioning from one spot has generally bad geometrical feature, or bad Dilution of Precision, expecting that navigation performance is low. To cover this problem, MOSAIC/DME system uses the measurement of carrier phase whose noise is mm-level. But using carrier phase cause the problem of integer cycle ambiguity, the measurement has unknown integer-term multiplied by wavelength. To solve ambiguity problem, a concept named MOSAIC is utilized. Standard MOSAIC concept is generally applied to solve the ambiguity problem directly when the antenna separation is smaller than half of the wavelength. But it is expected that larger antenna separation is required for aircraft application. Therefore, extended MOSAIC concept, whose cycle ambiguities are geometrically bounded, is used for easy ambiguity resolution.
Positioning algorithm is based on Least Square Ambiguity Search Technique (LSAST), and gets its position using Weighted Least Square Solution every epoch. Ambiguity resolution methods include not only residual threshold test and ratio of LSAST but matrix singularity check, convergence check, altitude bound, and AHRS test which utilize the special features of MOSAIC/DME system.
Monte-Carlo simulation, generating measurements, are executed for the verification of accuracy properties and ambiguity resolution of MOSAIC/DME system. Simulations results show that the accuracy performance of MOSAIC/DME satisfies the requirement of APNT. And most of ambiguity problems are solved within 20 seconds, and ambiguities of all simulation cases are solved in a minute.
This paper presented the conceptual outline of MOSAIC/DME system, and accuracy properties and ambiguity resolution are studied in priority. For the future research, ambiguity resolution improvement, simulation with various error sources, capacity study, signal analysis, message structure, and integrity for the safety of air services are considered for the implementation of this system.I. INTRODUCTION ๏ผ
1. Motivation and Purpose 1
2. Literature Survey ๏ผ
3. Outline ๏ผ
4. Contributions ๏ผ
II. APNT AND TERRESTRIAL NAVIGATION ๏ผ
1. APNT Requirement ๏ผ
2. Distance Measuring Equipment (DME) ๏ผ
3. VOR/DME system ๏ผ๏ผ
III. MOSAIC/DME SYSTEM ๏ผ๏ผ
1. MOSAIC Concept ๏ผ๏ผ
1) Standard MOSAIC Concept ๏ผ๏ผ
2) Extended MOSAIC Concept ๏ผ๏ผ
2. MOSAIC/DME SYSTEM ๏ผ๏ผ
1) Geometrical Analysis ๏ผ๏ผ
2) System Configuration ๏ผ๏ผ
3) System Performance ๏ผ๏ผ
3. Positioning Algorithm for MOSAIC/DME ๏ผ๏ผ
1) Weighted Least Squares (WLS) Solution ๏ผ๏ผ
2) Least Square Ambiguity Search Technique (LSAST) ๏ผ๏ผ
IV. AMBIGUITY RESOULTION METHOD ๏ผ๏ผ
1. Residual Threshold Test ๏ผ๏ผ
2. Ratio Test ๏ผ๏ผ
3. Singularity Check ๏ผ๏ผ
4. Convergence Check ๏ผ๏ผ
5. Altitude Bound ๏ผ๏ผ
6. AHRS Test ๏ผ๏ผ
V. SIMULATION RESULTS ๏ผ๏ผ
1. Simulation Settings ๏ผ๏ผ
1) Antenna Array ๏ผ๏ผ
2) Signals ๏ผ๏ผ
3) Measurements ๏ผ๏ผ
2. Accuracy Properties ๏ผ๏ผ
1) Range and Accuracy ๏ผ๏ผ
2) Antenna Separation and Accuracy ๏ผ๏ผ
3) Relative Position and Accuracy ๏ผ๏ผ
4) Class B APNT Requirement ๏ผ๏ผ
3. Simulation of Ambiguity Resolution ๏ผ๏ผ
1) Simulation Settings for Ambiguity Resolution ๏ผ๏ผ
2) Ambiguity Resolution without AHRS Test ๏ผ๏ผ
3) Ambiguity Resolution with AHRS Test ๏ผ๏ผ
VI. CONCLUSION ๏ผ๏ผ
1. Summary ๏ผ๏ผ
2. Suggestions for Future Work ๏ผ๏ผMaste
๋ค์ค ์ํ ๋ ๋ฐฐ์น๋ฅผ ํตํ ๋จ์ผ ์คํ ์ด์ ๊ธฐ๋ฐ ์ ๋ฐ ์์น๊ฒฐ์ ์์คํ
ํ์๋
ผ๋ฌธ (๋ฐ์ฌ)-- ์์ธ๋ํ๊ต ๋ํ์ : ๊ณต๊ณผ๋ํ ๊ธฐ๊ณํญ๊ณต๊ณตํ๋ถ, 2018. 8. ๊ธฐ์ฐฝ๋.๋จ์ผ ์คํ
์ด์
๊ธฐ๋ฐ ์์น๊ฒฐ์ ์์คํ
์ ์์ฑํญ๋ฒ์์คํ
์ ์ฌ์ฉํ ์ ์๋ ํ๊ฒฝ์์์ ๋์ฒดํญ๋ฒ๊ณผ ๊ฐ์ ๋ฐฑ์
์์คํ
์ ๋ชฉ์ ์ผ๋ก ํ๋ค. ๋ณธ ๋
ผ๋ฌธ์์๋ ๊ธฐ์กด์ DME(Distance Measuring Equipment)์์คํ
์ ๋จ๋ฐฉํฅ ์ฐ์์ ํธ๋ฅผ ๋ฐฉ์กํ๋ ๋ค์์ ์์ฌ์์ฑ ์ํ
๋๋ฅผ ์ถ๊ฐํ Mosaic/DME์์คํ
์ ์ ์ํ์๋ค. Mosaic/DME ์์คํ
์ ์ฃผ์ ํน์ง์ ํ๋์ ์คํ
์ด์
์์ ๋ค์์ ์ ํธ๋ค์ ๋๊ธฐํํ์ฌ ๋ฐฉ์กํ ์ ์์ผ๋ฉฐ, ํ๋์ ์คํ
์ด์
๋ง์ผ๋ก๋ ๊ณ ๋์ ๋ณด๋ฅผ ํฌํจํ 3์ฐจ์ ์์น๊ฒฐ์ ์ด ๊ฐ๋ฅํด ์ง๋ค๋ ์ ์ด๋ค. ๊ทธ๋ฆฌ๊ณ Mosaic/DME์ DME๋ ๊ธฐ์กด๊ณผ ๋์ผํ๊ฒ ๋์ํ๋ฏ๋ก ๊ธฐ์กด DME์คํ
์ด์
๊ณผ ํธํ๋๋ฉฐ, ์๋ฐฉํฅ ์ ํธ์ ๋จ๋ฐฉํฅ ์ ํธ๋ฅผ ๋ ๋ค ์ฌ์ฉํ๋ฏ๋ก DME ์คํ
์ด์
์ ํญ๊ณต๊ธฐ ์์ฉ๋ฅ๋ ฅ ์ญ์ ์ฆ๊ฐํ๋ฆฌ๋ผ ๊ธฐ๋ํ ์ ์๋ค.
Mosaic/DME ์์คํ
์ ํ๋์ ์คํ
์ด์
์์ ์์น๊ฒฐ์ ์ ์ํํ๋ฏ๋ก ๊ธฐํํ์ ์ผ๋ก ๋ฐฐ์น๊ฐ ์ข์ง ์์ ์ผ๋ฐ์ ์ธ ๋ฐฉ๋ฒ์ผ๋ก๋ ๋์ ์์น์ฑ๋ฅ์ ๊ธฐ๋ํ๊ธฐ ์ด๋ ต๋ค. Mosaic/DME ์คํ
์ด์
์ ์ด๋ฌํ ๋ฌธ์ ์ ์ ํด๊ฒฐํ๊ธฐ ์ํด์ ๋ฐ์กํ ์์ ์ธก์ ์น๋ฅผ ์ฌ์ฉํ์๋ค. ์ผ๋ฐ์ ์ผ๋ก ๋ฐ์กํ ์์์๋ ํ์ฅ๊ธธ์ด์ ๋ํ ๋ฏธ์ง์ ์ ํญ์ด ์ถ๊ฐ๋์ด ์์น๊ณ์ฐ์ ์ํด์๋ ์ด ๋ฏธ์ง์ ์ ๊ฐ์ ๊ฒฐ์ ํ ํ์๊ฐ ์๋ค. ๋ณธ ๋
ผ๋ฌธ์์ ์ ์ํ๋ Mosaic๊ฐ๋
์ ์ ์ฉํ ๊ฒฝ์ฐ, ์ธก์ ์น์ ๋ฏธ์ง์ ์ ๋ฒ์๋ฅผ ๊ธฐํํ์ ์ผ๋ก ์ ํํ์ฌ ๋ฏธ์ง์ ์ ๊ฒฐ์ ์ ํจ์จ์ ์ผ๋ก ์ํํ ์ ์๊ฒ ๋๋ค.
๋ณธ ๋
ผ๋ฌธ์์๋ Mosaic/DME์์ ์ฌ์ฉํ๋ ๋ค์์ ์์ฌ์์ฑ ์ํ
๋๋ฅผ ์ด๋ป๊ฒ ๋ฐฐ์นํ๋๊ฐ์ ๋ํด ๊ด์ฌ์์ญ์ ๊ณ ๋ คํ์ฌ ์์น์ ํ๋์ ๋ฏธ์ง์ ์ ๊ฒฐ์ ์ฑ๋ฅ ๋ ๊ฐ์ง ๊ด์ ์์ ๊ธฐ์ ํ์๋ค. ๋ฏธ์ง์ ์ ๊ฒฐ์ ์ฑ๋ฅ ๊ด์ ์์ ์ต์ ํ๋ ์ํ
๋ ๋ฐฐ์น๋ฅผ ๋์ถํ๊ธฐ ์ํด์ ๋ณธ ๋
ผ๋ฌธ์์๋ ๋ฏธ์ง์ ์ ๊ทธ๋ฌผ(Ambiguity Net) ๊ธฐ๋ฒ์ ์ ์ํ์๋ค. ๋ฏธ์ง์ ์ ๊ทธ๋ฌผ ๊ธฐ๋ฒ์ ์ ์ฉํ๋ฉด ๋ฏธ์ง์ ์์ ์ํด ๊ทธ๋ ค์ง๋ ์ธก์ ์น ๊ถค์ ์ ๊ต์ฐจ์ ์ ํฝ์
๋จ์๋ก ํ๋จํ์ฌ ํด๋น ์ํ
๋ ๋ฐฐ์น๊ฐ ๋ฏธ์ง์ ์ ๊ฒฐ์ ๋ฅ๋ ฅ์ ์ ๋ฆฌํ ์ ๋๋ฅผ ํ๋จํ ์ ์๋ค. ์์น์ ํ๋ ๊ด์ ์์๋ ๊ด์ฌ์์ญ ๋ด์์ ๊ฐ์ฅ ์์น์ฑ๋ฅ์ด ๋ฎ์ ์ง์ ์ DOP(Dilution Of Precision)๋ฅผ ์ฑ๋ฅ์ง์๋ก ์ ์ ํ์ฌ, ํด๋น ์ฑ๋ฅ์ง์๊ฐ ๊ฐ์ฅ ๋ฎ์์ง๋๋ก ์ํ
๋ ๋ฐฐ์น์ ์ต์ ํ๋ฅผ ์ํํ ์ ์๋ค.
๊ด์ฌ์์ญ ๋ด์์ ์์ ์ธ๊ธํ ๋ฏธ์ง์ ์ ๊ฒฐ์ ์ฑ๋ฅ๊ณผ ์์น์ ํ๋ ๋ ๊ฐ์ง๋ฅผ ์ต์ ํํ ์ ์๋๋ก ์ํ
๋๋ฅผ ๋ฐฐ์นํ๋ ์ ๋ต์ ๋ํด์๋ ๊ธฐ์ ํ์๋ค. ๋ชฉํ ์์น์ ํ๋๋ฅผ ๋ง์กฑํ๋ฉด์ ๋์์ ๋ฏธ์ง์ ์ ๊ฒฐ์ ์ฑ๋ฅ๋ ๋ณด์ฅํ๋ ์ํ
๋ ๋ฐฐ์น์ ๋ํด ์ํ
๋ ์, ์ํ
๋ ๊ฐ๊ฒฉ ๋ฑ์ ์ต์ํํ๋ ์ ๋ต์ ๋จ๊ณ์ ์ผ๋ก ๊ธฐ์ ํ์๋ค.
๋ณธ ๋
ผ๋ฌธ์์ ์ ์๋๊ณ ์ธ๊ธ๋ ๋ฐฉ๋ฒ๋ค๊ณผ ์ ๋ต์ ๋ํด ์๋ฎฌ๋ ์ด์
์ผ๋ก ๊ฒ์ฆ์ ์ํํ์๋ค. DOP ์ฑ๋ฅ์ง์์ ๋ฏธ์ง์ ์ ๊ทธ๋ฌผ ๊ธฐ๋ฒ์ ์ ์ฉํ์ฌ ๊ฒฐ์ ๋ ์ํ
๋ ๋ฐฐ์น์ ๋ํด, ์๋ฎฌ๋ ์ด์
์ผ๋ก ์์น์ ํ๋์ ๋ฏธ์ง์ ์ ๊ฒฐ์ ๋ฅ๋ ฅ์ ํ์ธํ๊ณ , ๋ค๋ฅธ ์ํ
๋ ๋ฐฐ์น๋ค๊ณผ ๋น๊ต/๋ถ์์ ์งํํ์๋ค.Chapter 1. Introduction 1
1.1 Motivation and Purpose 1
1.2 Literature Survey 4
1.3 Outline of the Dissertation 7
1.4 Contributions 9
Chapter 2. Background 10
2.1 Alternate Positioning Navigation and Timing (APNT) 10
2.1.1. NextGen and APNT 10
2.1.2. APNT Requirements (Navigation Accuracy) 12
2.2 Distance Measuring Equipment (DME) 13
2.3 VOR/DME system 14
2.4 Multilateration (MLAT) 17
Chapter 3. A Single Station-based Positioning System (Mosaic/DME System) 19
3.1 Mosaic Concept 19
3.2 Mosaic/DME System 22
3.2.1. System Configuration 22
3.2.2. Positioning Algorithm 25
3.2.3. Potential Solutions 28
3.2.4. Special Features 30
3.3 Positioning Accuracy Analysis 31
3.3.1. Measurement Error 32
3.3.2. Weighted DOP 34
3.3.3. Accuracy Simulation 39
3.4 Ambiguity Resolution 43
3.4.1. Features of Cycle Ambiguity 43
3.4.2. Strategy of Ambiguity Resolution 44
Chapter 4. Multi-Antenna Arrangement Method for 2D Environment 47
4.1 Area of Interest (AOI) 48
4.2 Antenna Arrangement for Positioning Accuracy 49
4.3 Antenna Arrangement for Ambiguity Resolution 54
4.3.1. Ambiguity Net Image 54
4.3.2. Pixel Bound Analysis 61
4.3.3. Ambiguity Net Technique 65
4.3.4. Tendency Simulation 71
4.4 Antenna Arrangement considering Positioning Accuracy and Cycle Ambiguity Resolution Performance 73
4.4.1. Antenna Arrangement Method 73
4.4.2. Robust Antenna Arrangement to Antenna Position Error 77
4.4.3. Bound Size Analysis for Ambiguity Net Technique 80
Chapter 5. Strategy of Multi-Antenna Arrangement 83
5.1 Strategy Background 83
5.2 Antenna Arrangement Strategy 85
5.3 Simulation Results for 2-D environment 91
5.3.1. AOI: ยฑ30ยฐ bound 92
5.3.2. AOI: ยฑ60ยฐ bound 97
5.3.3. AOI: all area (-180ยฐ ~ 180ยฐ) 101
Chapter 6. Multi-Antenna Arrangement for 3D Environment 106
6.1 Area of Interest (AOI) 107
6.2 Antenna Arrangement for Positioning Accuracy 108
6.3 Antenna Arrangement for Ambiguity Resolution 108
6.4 Simulation Results 115
6.4.1. Simulation Settings 115
6.4.2. Ambiguity Resolution Results 120
6.4.3. Positioning Accuracy Results 125
Chapter 7. Conclusions 128
7.1 Conclusions 128
7.2 Suggestions for Future Work 129
Chapter 8. Reference 131
Appendix A: Analysis about Linear Assumption of Hyperbolic Asymptotes 136
Appendix B: Probabilistic Analysis of Zero-ANCP 141Docto
Development of GPS/Galileo Integrated Receiver Technology for LEO
๋ณธ ๋
ผ๋ฌธ์ ์ ๊ถค๋ ์์ฑ ํ๊ฒฝ์์ ํ์ฉ ๊ฐ๋ฅํ GPS/Galileo ๋ณตํฉ ์์ ๊ธฐ ๊ธฐ์ ๊ฐ๋ฐ์ ๋ํ ๊ฒ์ผ๋ก, GPS/Galileo ํตํฉ ์์ ๊ธฐ์ OD(Onboard Determinator), OOP(Onboard Orbit Propagator)์ ๊ฐ๋ฐ์ ํฌํจํ๋ค. ์ ๊ถค๋ ์์ฑ์ ๋น ๋ฅธ ์ด๋์ผ๋ก ์ธํ ๊ฐ์์์ฑ์ ์ฆ์ ๋ณํ, ๋์ ๋ํ๋ฌ ๋ณํ์จ ๋ฑ์ ๊ณ ๋ คํ์์ผ๋ฉฐ ์์ ์ ํธ๋ GPS L1/L2C/L5, Galileo E1B/E5a๋ฅผ ํฌํจํ๋ค. OD, OOP๋ GNSS ๋์ญํ
๋ชจ๋ธ๊ณผ ๊ถค๋ ์ ๋ณด๋ฅผ ์ด์ฉํ์ฌ ์์ ๊ธฐ๊ฐ ๋น์ ์ ๋์ํ๋ ์ํฉ์ ๋๋นํ ์ ์๋๋ก ํ๋ค. ๊ฐ๋ฐ๋ ๋ณตํฉ ์์ ๊ธฐ๋ MATLAB ์ํํธ์จ์ด๋ก ๊ฐ๋ฐ๋์์ผ๋ฉฐ H/W ์๋ฎฌ๋ ์ดํฐ ์ ํธ๋ฅผ ์ด์ฉํ์ฌ ๊ฒ์ฆ๋๋ค.OAIID:oai:osos.snu.ac.kr:snu2012-01/104/0000003405/19SEQ:19PERF_CD:SNU2012-01EVAL_ITEM_CD:104USER_ID:0000003405ADJUST_YN:NEMP_ID:A000360DEPT_CD:446CITE_RATE:0FILENAME:2012KGS_paper_๊น์ข
์.pdfDEPT_NM:๊ธฐ๊ณํญ๊ณต๊ณตํ๋ถEMAIL:[email protected]: